A NOTE ON GREENBERG’S CONJECTURE
AND THE ABC CONJECTURE

HUMIO ICHIMURA

(Communicated by William W. Adams)

Abstract. For any totally real number field \(k \) and any prime number \(p \), Greenberg’s conjecture for \((k, p)\) asserts that the Iwasawa invariants \(\lambda_p(k) \) and \(\mu_p(k) \) are both zero. For a fixed real abelian field \(k \), we prove that the conjecture is “affirmative” for infinitely many \(p \) (which split in \(k \)) if we assume the abc conjecture for \(k \).

1. Introduction

For a number field \(k \) and a prime number \(p \), let \(k_{\infty}/k \) be the cyclotomic \(\mathbb{Z}_p \)-extension over \(k \) with its \(n \)th layer \(k_n \) \((k_0 = k)\). Let \(A_n \) be the Sylow \(p \)-subgroup of the ideal class group of \(k_n \) and \(A_{\infty} = \lim \leftarrow A_n \) the projective limit w.r.t. the relative norms. We denote by \(\lambda_p = \lambda_p(k) \) and \(\mu_p = \mu_p(k) \) the Iwasawa \(\lambda \)-invariant and the \(\mu \)-invariant associated to \(A_{\infty} \), respectively. Greenberg’s conjecture for \(k \) and \(p \) asserts that \(\lambda_p = \mu_p = 0 \) for any totally real number field \(k \) and any \(p \) (cf. [Iw], p. 316, [Gr]). It is well known that the conjecture is valid if (1) there is only one prime ideal of \(k \) over \(p \) and it is totally ramified in \(k_{\infty} \) and further (2) \(A_0 = \{1\} \) (cf. [W], Proposition 13.22). In particular, \(\lambda_p(\mathbb{Q}) = \mu_p(\mathbb{Q}) = 0 \) for all \(p \). Further, it is known that \(\mu_p = 0 \) when \(k \) is abelian over \(\mathbb{Q} \) (cf. [FW]). But, the conjecture for general \(k \) and \(p \) is far from being settled in spite of the efforts of several authors (see [IS] and its references).

In this note, we consider the following subproblem: “For a fixed totally real number field \(k \) \((\neq \mathbb{Q})\), do there exist infinitely many prime numbers \(p \) for which \(\lambda_p = \mu_p = 0? \)” In view of the proposition in [W] cited above, we should confine ourselves to those \(p \) which split in \(k \). We prove that for a certain real abelian field \(k \), the problem is “affirmative” if we assume the abc conjecture for \(k \). Here, the abc conjecture is formulated as follows:

Conjecture (cf. [V], p. 84). Let \(K \) be a number field. For any \(\varepsilon \) \((> 0)\) and any finite set \(S \) of prime ideals of \(K \), there exists a constant \(C \) \((> 0)\) depending only...
on K, ε and S such that

$$(1) \quad \prod_v \max(||a||_v, ||b||_v, ||c||_v) \leq C \left(\prod_p' N_p \right)^{1+\varepsilon}$$

for all integers a, b, c of K with $a + b = c$. Here, v runs over all absolute values of K, $|| \cdot ||_v$ denotes the normalized valuation and p runs over all prime ideals of K with $p|abc$ and $p \notin S$.

Now, let k/Q be a real abelian extension with $k \neq Q$, and $\Delta = \text{Gal}(k/Q)$. For a prime number p with $p \nmid [k: Q]$ and a Q_p-character Ψ of Δ, let $\lambda_p(\Psi)$ and $\mu_p(\Psi)$ be the λ-invariant and the μ-invariant associated to the Ψ-component $e_\Psi A_\infty$, respectively. Here, a Q_p-character means a Q_p-valued character of Δ defined and irreducible over Q_p, and e_Ψ is the idempotent of $Q_p[\Delta]$ corresponding to Ψ, which is an element of $Z_p[\Delta]$ as $p \nmid [k: Q]$. By [FW], $\mu_p(\Psi) = 0$. We have $\lambda_p = \sum \lambda_p(\Psi)$, Ψ running over all Q_p-characters of Δ. Further, for the trivial character Ψ_0 of Δ, we have $\lambda_p(\Psi_0) = 0$ since $\lambda_p(\Psi_0) = \lambda_p(Q)$.

Theorem 1. Let k/Q be a real cyclic extension with $[k: Q]$ an odd prime number. If the abc conjecture for k is valid, then there exist infinitely many pairs (p, Ψ) of a prime number p (with $p \nmid [k: Q]$) and a nontrivial Q_p-character Ψ of Δ satisfying (I) p splits in k and (II) $\lambda_p(\Psi) = 0$.

Theorem 2. Let k/Q be a real quadratic extension for which the norm of a fundamental unit is -1. If the abc conjecture for k is valid, then there exist infinitely many prime numbers p satisfying (I) p splits in k and (II) $\lambda_p = 0$.

When (i) k/Q is noncyclic or (ii) k/Q is cyclic and $[k: Q]$ is a composite, an assertion similar to the above theorems holds without assuming the abc conjecture (see §4).

2. Some lemmas

First, we introduce some notation. Let k/Q be a real abelian extension with $k \neq Q$, p an odd prime number with $p \nmid [k: Q]$ and Ψ a Q_p-character of $\Delta = \text{Gal}(k/Q)$. We fix p and Ψ in this section. Let ψ be a fixed irreducible component of Ψ over an algebraic closure \overline{Q}_p of Q_p, and let $O = O_\psi$ be the subring of \overline{Q}_p generated by the values of ψ over Z_p. We identify the subring $e_\Psi Z_p[\Delta]$ of $Z_p[\Delta]$ with O by $e_\Psi \sigma \mapsto \psi(\sigma)$ ($\sigma \in \Delta$). Then, for a $Z_p[\Delta]$-module X (e.g. A_n, A_∞), its Ψ-component $X(\psi) = e_\Psi X$ (or X^{e_Ψ}) is considered as an O-module. Therefore, $A_\infty(\Psi)$ is regarded as a module over the completed group ring $\Lambda_p, \psi = O[[\text{Gal}(k/k)]]$. It is known to be torsion over Λ_p, ψ by [Iw], Theorem 5. Let r be the degree of the quotient field of O over Q_p. The invariant $\lambda_p(\Psi)$ (resp. $\mu_p(\Psi)$) mentioned in §1 is r times the λ-invariant (resp. μ-invariant) of the torsion Λ_p, ψ-module $A_\infty(\Psi)$.

For a prime ideal p of k over p, let k_p be the completion of k at p and U_p the group of principal units of k_p. We denote by U the group of semi-local units of k at p, namely, $U := \prod \overline{U}_p$, p running over all prime ideals of k with $p|p$. The group E of global units of k is considered as a subgroup of $\prod_{p|p} k_p^\times$. Denote by E the closure of $E \cap U$ in U. The groups U and E can be regarded as $Z_p[\Delta]$-modules in a natural way, and hence $U(\Psi)$ and $E(\Psi)$ are O-modules.
We regard ψ as a primitive Dirichlet character, and we denote its “dual” character by ψ^*. Namely, ψ^* is the primitive Dirichlet character associated to $\omega \psi^{-1}$, where ω is the Teichmüller character $\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}_p$.

Lemma 1 (cf. [IS], Remark 4). If $\psi(p) \neq 1$ and $A_0(\Psi) = \{1\}$, then we have $\lambda_p(\Psi) = \mu_p(\Psi) = 0$.

Lemma 2. Assume that Ψ is nontrivial. If $A_0(\Psi) = \{1\}$ and $U(\Psi) = \mathcal{E}(\Psi)$, then we have $\lambda_p(\Psi) = \mu_p(\Psi) = 0$.

Lemma 1 is a refinement of the proposition in [W] cited in §1. Lemma 2 is already known when k is a real quadratic field by [FK]. The assertion for the general case and its proof were communicated to the author by Hiroki Sumida.

Proof of Lemma 2. Let M/k_∞ be the maximal pro-p abelian extension unramified outside p and L/k_∞ the maximal unramified pro-p abelian extension. Further, let M_0 be the maximal abelian extension of k contained in M and K_0 the Hilbert p-class field of k. The Galois groups $\text{Gal}(M/k_\infty)$, $\text{Gal}(L/k_\infty)$, etc. are regarded as modules over $\mathbb{Z}_p[\Delta]$ in a natural way. By class field theory, $\text{Gal}(L/k_\infty)$ is canonically isomorphic to A_∞. Therefore, as $M \supset L$, it suffices to show that $\text{Gal}(M/k_\infty)(\Psi) = \{1\}$. We have a canonical isomorphism $\text{Gal}(M_0/K_0) \simeq U/E$ by class field theory (cf. [C], Theorem 1). From this, we see that $\text{Gal}(M_0/K_0k_\infty)(\Psi)$ is isomorphic to $U(\Psi)/E(\Psi)$ since $\text{Gal}(M_0/K_0k_\infty)(\Psi) = \text{Gal}(M_0/K_0)(\Psi)$ as $\Psi \neq \Psi_0$. On the other hand, $\text{Gal}(K_0k_\infty/k_\infty)(\Psi)$ is naturally isomorphic to $A_0(\Psi)$. Therefore, under the assumptions of Lemma 2, we obtain $\text{Gal}(M_0/k_\infty)(\Psi) = \{1\}$ and hence $\text{Gal}(M/k_\infty)(\Psi) = \{1\}$ by Nakayama’s lemma.

Lemma 3. Assume $\psi^*(p) \neq 1$. Let X be a closed Galois submodule of $U(\Psi)$ such that $u_q \neq 1 \mod q^2$ for some element $u = (u_p)p|p$ in X and some prime ideal q with $q|p$. Then, we have $X = U(\Psi)$.

Proof. We have $U(\Psi) \simeq O$ because of $\psi^*(p) \neq 1$ (cf. [Gi], §2). Therefore, $X = U(\Psi)^A$ for some ideal A of O since X is an O-submodule of $U(\Psi)$. We have $A = p^aO$ for some integer a (≥ 0) since the quotient field of O is unramified over \mathbb{Q}_p as $p \not| [k: \mathbb{Q}]$. If $a \geq 1$, then we must have $u_p \equiv 1 \mod p^2$ for all $u = (u_p)$ in X and all $p|p$. Therefore, we obtain $A = O$ and $X = U(\Psi)$.

The following lemma is easily proved and we do not give its proof.

Lemma 4. Let K be a number field, p a prime ideal of K and α an element of K relatively prime to p. If $\alpha^n \equiv 1 \mod p$ but $\alpha^n \not\equiv 1 \mod p^2$ for some integer n, then we have $\alpha^{Np-1} \not\equiv 1 \mod p^2$.

3. PROOF OF THE THEOREMS

Let k/\mathbb{Q} be (A) a real cyclic extension with $[k: \mathbb{Q}]$ an odd prime number or (B) a real quadratic extension for which the norm of a fundamental unit is -1. In the case (A), take a totally negative unit ε of k with $\varepsilon \neq -1$. Then, $N\varepsilon = -1$ as $[k: \mathbb{Q}]$ is odd. Here, N denotes the norm map from k to \mathbb{Q}. In the case (B), let ε be a fundamental unit of k, for which we have $N\varepsilon = -1$ by assumption. Let $\| \cdot \|_i$ ($1 \leq i \leq [k: \mathbb{Q}]$) be the real absolute values of k. Replacing ε by ε^x for some large odd integer x if necessary, we may well assume that $\| \varepsilon \|_i$ is so large (resp. so small) for all i with $\| \varepsilon \|_i > 1$ (resp. $\| \varepsilon \|_i < 1$) that

\begin{equation}
|N(1 - \varepsilon^n)| > |N(1 - \varepsilon^m)| \quad \text{when } m > n \geq 1.
\end{equation}
Claim 1. Let \(\mathfrak{p} \) be a prime ideal of \(k \) with \(\mathfrak{p} \not| 2 \). If \(\varepsilon^n \equiv 1 \mod \mathfrak{p} \) for some odd integer \(n \), then \(\mathfrak{p} = \mathfrak{p} \cap \mathbb{Q} \) splits completely in \(k \).

Actually: Assume that \(p \) does not split completely in \(k \). Then, \(\mathfrak{p} \) is the unique prime ideal of \(k \) over \(p \) since \([k: \mathbb{Q}] \) is a prime number. So, \((\varepsilon^n)^n \equiv 1 \mod \mathfrak{p} \) for all \(\sigma \in \Delta \). Therefore, as \(n \) is odd, \(-1 = (N\varepsilon)^n \equiv 1 \mod \mathfrak{p} \). This contradicts \(p \not| 2 \).

Now, we assume that the \(abc \) conjecture holds for \(k \). Then, applying the inequality (1) for \(\varepsilon^n + (1 - \varepsilon^n) = 1 \), we see that for some constant \(C_1 \),

\[
|N(1 - \varepsilon^n)| \leq C_1 \left(\prod_{\mathfrak{p}|(1 - \varepsilon^n)} N\mathfrak{p} \right)^{3/2}
\]

for all integers \(n \). Here, \(\mathfrak{p} \) runs over all prime ideals of \(k \) with \(\mathfrak{p}|(1 - \varepsilon^n) \) and \(\mathfrak{p} \not| 2(1 - \varepsilon) \). Using this inequality, we show

Claim 2. Under the \(abc \) conjecture for \(k \), for all sufficiently large \(n \) satisfying

\[
(n, 2(1 - \varepsilon)) = 1,
\]

there exists a prime ideal \(\mathfrak{p} \) of \(k \) such that

\[
(5)_n \quad \mathfrak{p} \not| 2(1 - \varepsilon), \quad \varepsilon^n \equiv 1 \mod \mathfrak{p} \quad \text{and} \quad \varepsilon^n \not\equiv 1 \mod \mathfrak{p}^2.
\]

Actually: For an integer \(n \) with (4) and a prime ideal \(\mathfrak{p} \) of \(k \) satisfying \(\mathfrak{p}|(1 - \varepsilon^n) \) and \(\mathfrak{p} \not| 2(1 - \varepsilon) \), we see that \(\text{ord}_\mathfrak{p}(1 - \varepsilon^n) \leq C_2 \) for some constant \(C_2 \) independent of \(n \) and \(\mathfrak{p} \), where \(\text{ord}_\mathfrak{p}(\varepsilon) \) is the normalized additive valuation at \(\mathfrak{p} \). This follows from \((1 - \varepsilon^n)/(1 - \varepsilon) \equiv n \mod (1 - \varepsilon) \) and \((n, 1 - \varepsilon) = 1 \) for \(\mathfrak{p} \) with \(\mathfrak{p}|(1 - \varepsilon) \) and from \(2 \not| n \) for \(\mathfrak{p} \) with \(\mathfrak{p}|2 \). Therefore, by (2), for all sufficiently large \(n \) with (4), there exists a prime ideal \(\mathfrak{p} \) such that \(\varepsilon^n \equiv 1 \mod \mathfrak{p} \) and \(\mathfrak{p} \not| 2(1 - \varepsilon) \). Assume that there are infinitely many \(n \) with (4) such that \(\varepsilon^n \equiv 1 \mod \mathfrak{p}^2 \) for all \(\mathfrak{p} \) satisfying \(\varepsilon^n \equiv 1 \mod \mathfrak{p} \) and \(\mathfrak{p} \not| 2(1 - \varepsilon) \). For these \(n \), we have

\[
\prod_{\mathfrak{p}|(1 - \varepsilon^n)} N\mathfrak{p} \leq |N(1 - \varepsilon^n)|^{1/2}.
\]

Combining this inequality with (3), we obtain

\[
|N(1 - \varepsilon^n)| \leq C_1|N(1 - \varepsilon^n)|^{3/4}.
\]

This is a contradiction since the last inequality holds only for a finite number of \(n \) because of (2), and hence, Claim 2 is proved.

Let \(n_1 \) and \(n_2 \) be (sufficiently large) integers satisfying (4) and \((n_1, n_2) = 1\), and let \(\mathfrak{p}_i \) be a prime ideal of \(k \) satisfying (5) with \(n = n_i \) \((i = 1, 2)\). Assume \(\mathfrak{p}_1 = \mathfrak{p}_2 \) \((= \mathfrak{p})\). Then, from \(\varepsilon^{n_1} \equiv 1 \mod \mathfrak{p} \) and \((n_1, n_2) = 1 \), we have \(\varepsilon \equiv 1 \mod \mathfrak{p} \), contradicting (5). Thus, we must have \(\mathfrak{p}_1 \neq \mathfrak{p}_2 \). Therefore, by Claims 1, 2 and Lemma 4, we see that there exist infinitely many prime ideals \(\mathfrak{p} \) of \(k \) for which \(p = \mathfrak{p} \cap \mathbb{Q} \) splits completely in \(k \) and

\[
\varepsilon^{N\mathfrak{p}^{-1}} = \varepsilon^{p^{-1}} \not\equiv 1 \mod \mathfrak{p}^2.
\]

Let \(\mathfrak{p} \) be a prime ideal of \(k \) satisfying the above two conditions. We may well assume that \(p = \mathfrak{p} \cap \mathbb{Q} \) is so large that

\[
p \not| [k: \mathbb{Q}] \cdot d_k \cdot h_k,
\]

where \(d_k \) (resp. \(h_k \)) is the discriminant (resp. the class number) of \(k \). By (6) and \(p \not| [k: \mathbb{Q}] \), there exists a nontrivial \(\mathbb{Q}_p \)-character \(\Psi \) of \(\Delta \) such that \((\varepsilon^{p^{-1}})^{\Psi} \not\equiv 1 \mod \mathfrak{m}^2\).
Let ψ be, as before, an irreducible component of Ψ over $\overline{\mathbb{Q}}_p$. Then, by $p \nmid d_k$, the conductor of the dual character ψ^* of ψ is divisible by p, and hence $\psi^*(p) \neq 1$. Therefore, we have $U(\Psi) = E(\Psi)$ by Lemma 3. Now, we obtain $\lambda_p(\Psi) = \mu_p(\Psi) = 0$ from Lemma 2 and $p \nmid h_k$. Further, in the case (B) (= the real quadratic case), we have $\lambda_p = \lambda_p(\Psi) + \lambda_p(\Psi_0) = 0$. Thus, we have proved Theorems 1 and 2.

Remark 1. Lang [L], p. 41, presents an argument which derives the existence of infinitely many primes p with $2p^{-1} \equiv 1 \mod p^2$ from the abc conjecture for \mathbb{Q}. In the above proof of Theorems 1 and 2, we have used this classical argument.

Remark 2. In the above proof of Theorems 1 and 2, the existence of a unit ε with $N\varepsilon = -1$ is quite essential. The author could not handle a real quadratic field whose fundamental unit has norm 1 by the method in this note.

4. Remark

Let k/\mathbb{Q} be a real abelian extension with $k \neq \mathbb{Q}$ and ψ a fixed nontrivial homomorphism from $\Delta = \text{Gal}(k/\mathbb{Q})$ to \mathbb{Q}^\times, where $\overline{\mathbb{Q}}$ is an algebraic closure of \mathbb{Q}. Fixing an embedding of \mathbb{Q} into $\overline{\mathbb{Q}}_p$ for each prime p, we denote by Ψ_p the \mathbb{Q}_p-character of Δ for which ψ is an irreducible component over $\overline{\mathbb{Q}}_p$. We also denote by k_ψ the subfield of k corresponding to $\ker \psi$ by Galois theory.

Assume that (C) k/\mathbb{Q} is non-cyclic or (D) k/\mathbb{Q} is cyclic with $[k: \mathbb{Q}]$ a composite. In the case (D), we further assume that $k_\psi = k$. Then, there exist infinitely many primes p satisfying (I) p splits in k and (II) $\lambda_p(\Psi_p) = 0$.

Actually: As is easily seen, there exist infinitely many p which remain prime in k_ψ but split in k (resp. which split but not completely in k) in the case (C) (resp. (D)). For these p, we have $\psi(p) \neq 1$, and hence $\lambda_p(\Psi_p) = 0$ if $p \nmid [k: \mathbb{Q}]$ and $p \nmid h_k$ by Lemma 1.

Acknowledgement

The author is very grateful to Hiroki Sumida for communicating Lemma 2 and its proof to him and for kindly permitting him to include them in this note.

References

[L] S. Lang, Old and new conjectured diophantine inequalities, Bull. AMS, 23 (1990), 37–75. MR 90k:11082

Department of Mathematics, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, 236 Japan

E-mail address: ichimura@yokohama-cu.ac.jp