TWIST POINTS OF THE VON KOCH SNOWFLAKE

FAUSTO DI BIASE, BERT FISCHER, AND RÜDIGER L. URBANKE

(Communicated by Albert Baernstein II)

Abstract. It is known that the set of twist points in the boundary of the von Koch snowflake domain has full harmonic measure. We provide a new, simple proof, based on the doubling property of the harmonic measure, and on the existence of an equivalent measure, invariant and ergodic with respect to the shift.

The von Koch snowflake domain D is the union of an increasing sequence of open polygons D_n, where D_0 is an equilateral triangle, and D_{n+1} is obtained from D_n by replacing the middle third of each side of D_n by the two other sides of the equilateral triangle based on the removed segment and lying outside D_n [vK06]. A point $\omega \in \partial D$ is called a twist point if

$$\liminf_{z \to \omega, z \in \sigma} \arg(z - \omega) = -\infty, \quad \limsup_{z \to \omega, z \in \sigma} \arg(z - \omega) = +\infty$$

for each curve σ in D ending at ω [P92, p.141]. Let ν_p be the harmonic measure on ∂D for D with respect to the center p of D_0. We show that the following known theorem admits a new, simple proof, based on the doubling property of ν_p and on the existence of a measure equivalent to ν_p, invariant and ergodic with respect to the shift.

Theorem. The set of twist points in the boundary of the von Koch snowflake has full harmonic measure.

Let T_n be the collection of the sides of D_n. For $n = 1, 2, \ldots$ we now define a labeling $\ell : T_n \to A$, where $A = \{l, r, c_l, c_r\}$. For each $x \in T_n$ ($n = 0, 1, 2, \ldots$), the left third of x is an element of T_{n+1} and is labeled by l; the right third of x (also an element of T_{n+1}) is labeled by r; the equilateral triangle based on the middle third of x has two other sides (again, elements of T_{n+1}): the one adjacent to the left (right) third is labeled by c_l (c_r). The subset of T_{n+1} just described is denoted by $\lambda_+(x)$; its elements are called direct descendants of x; each $y \in T_{n+1}$ is a direct descendant of a unique element of T_n, denoted by y^-. Let $T = \bigcup_{n=0}^{\infty} T_n$. For $x \in T$ we write $|x| = n$ if $x \in T_n$.

Let C be the collection of the vertices of all the polygons D_n; since C is countable, its harmonic measure is zero [HK76, p.247]. For each $\omega \in \partial D \setminus C$ there is a...
There is a number \(\omega \).

Proof.

Let \(\sigma \) be a curve in \(D \) ending at \(\omega \), that is to say, a continuous map \(\sigma : [0, 1] \rightarrow D \) such that \(\lim_{t \rightarrow 1} \sigma(t) = \omega \). Without loss of generality we may assume that \(\sigma(0) \in D_0 \). Let \(\sigma^* : [0, 1] \rightarrow \mathbb{R} \) be the continuous function (determined modulo a multiple of \(2\pi \)) such that \(\sigma(t) - \omega = |\sigma(t) - \omega|e^{i\sigma^*(t)} ; \) we may also assume that \(|\sigma^*(0) - \alpha(x_0)| < \pi/2 \) (thus uniquely determining \(\sigma^* \)). To prove the lemma, we show that for each curve \(\sigma \) in \(D \) ending at \(\omega \), there is a sequence \(\{ t_n \} \subset [0, 1] \) such that \(\lim_{n \rightarrow \infty} t_n = 1 \) and

\[
\sigma^*(t_n) = \alpha(\omega(n)) + \epsilon_n
\]

(1)
with $|\epsilon_n| \leq \pi/2$. For $n = 0$ and $t_0 = 0$ this statement follows from the definition of σ^*. For each $x \in T$ let $\Delta(x)$ be the equilateral triangle based on x and pointing to the inside of D. Now let t_n be the smallest t such that $\sigma(t_n) \in \Delta(\omega(n))$. It follows that $\sigma(t_n)$ also belongs to $\Delta(\omega(n-1))$. Observe that for every $s \in \Delta(\omega(n))$, the vector from ω to s lies in a $\pi/2$-cone around the inward normal vector to the basis of the triangle. So we have

$$(2) \quad \sigma^*(t_n) = \alpha(\omega(n-1)) + 2\pi k + \epsilon'$$

with $|\epsilon'| \leq \pi/2$ and

$$(3) \quad \sigma^*(t_n) = \alpha(\omega(n)) + 2\pi l + \epsilon''$$

with $|\epsilon''| \leq \pi/2$. Let us also assume that we already have proven that

$$(4) \quad \sigma^*(t_{n-1}) = \alpha(\omega(n-1)) + \epsilon_{n-1}$$

with $|\epsilon_{n-1}| \leq \pi/2$.

Observe that whenever the segment between $\sigma(s)$ and $\sigma(t)$ is contained inside D, then $|\sigma^*(s) - \sigma^*(t)| < \pi$. In fact, if we complete the curve from $\sigma(s)$ to $\sigma(t)$ with the segment between them, then we obtain a closed curve inside the simply connected domain D. (Note that between the times s and t the curve σ might go anywhere in D and σ^* might become much greater or smaller). Now, the segment between $\sigma(t_{n-1})$ and $\sigma(t_n)$ is contained in D. So we can deduce from (2) and (4) that $|2\pi k + \epsilon' - \epsilon_{n-1}| < \pi$, which implies $k = 0$.

Since we also know that $|\alpha(\omega(n)) - \alpha(\omega(n-1))| \leq \pi/3$, we can conclude from (2) with $k = 0$ and (3) that $|2\pi l + \epsilon'' - \epsilon'| \leq \pi/3$, which implies $l = 0$. So finally we get (1) with $\epsilon_n := \epsilon''$.

Proof of the theorem. By Lemma 3, it suffices to show that the following sets have harmonic measure zero:

- $A_+ := \{\omega \in \Omega : \limsup_{n \to -\infty} \alpha(\omega(n)) = \infty \text{ and } \liminf_{n \to -\infty} \alpha(\omega(n)) > -\infty\}$,
- $A_- := \{\omega \in \Omega : \limsup_{n \to -\infty} \alpha(\omega(n)) < \infty \text{ and } \liminf_{n \to -\infty} \alpha(\omega(n)) = -\infty\}$,
- $A_d := \{\omega \in \Omega : \limsup_{n \to -\infty} \alpha(\omega(n)) - \liminf_{n \to -\infty} \alpha(\omega(n)) = d\pi/3\}$ for $d \in \mathbb{N}$.

Let us start with A_d for some fixed $d \in \mathbb{N}$. Since the image of the function α is a discrete set, for each $\omega \in A_d$ there exists a number n_0 such that $\alpha(\omega(n)) \leq \alpha(\omega(n_0)) + d\pi/3$ for all $n > n_0$. Therefore A_d is a subset of $\bigcup_{x \in T} E'_d(x)$,

$$E'_d(x) := \{\omega \in \Omega \cap E(x) : \alpha(x) \leq \alpha(\omega(n)) \leq \alpha(x) + d\pi/3 \text{ for all } n \geq |x|\}.$$

Since T is countable, it suffices to show that $\nu(E'_d(x)) = 0$ for all $x \in T$. Define $\lambda^+_1(x) := \lambda^+_1(x)$, and, recursively, $\lambda^+_n(x) := \bigcup_{y \in \lambda^+_1(x)} \lambda^+_1(y)$. For each $y \in \{x\} \cup \bigcup_{n=1}^\infty \lambda^+_n(x)$ there is a unique $\hat{y} \in \lambda^+_n(x) \setminus \{y\}$ such that $\alpha(\hat{y}) = \alpha(y) - (d+1)\pi/3$; thus

$$(5) \quad E'_d(x) \cap E(y) \subset \bigcup_{z \in \lambda^+_n(x) \setminus \{\hat{y}\}} E(z).$$

In particular, we get

$$(6) \quad E'_d(x) \subseteq \bigcup_{x_1 \in \lambda^+_1(x) \setminus \{\hat{x}\}} E(x_1).$$
and therefore
\[\nu(E'_d(x)) \leq \sum_{x_1 \in \lambda^{d+1}_+(x) \setminus \{\hat{x}\}} \nu(E(x_1)) \leq (1 - \epsilon^{d+1})\nu(E(x)) , \]
since, by Lemma 1, \(\nu(E(\hat{x})) \geq \epsilon^{d+1}\nu(E(x)) \). Now we apply (5) in (6) and get
\[E'_d(x) \subseteq \bigcup_{x_1 \in \lambda^{d+1}_-(x) \setminus \{\hat{x}\}} E(x_1) \cap E'_d(x) \subseteq \bigcup_{x_1 \in \lambda^{d+1}_-(x) \setminus \{\hat{x}\}} E(x_1) \bigcup_{x_2 \in \lambda^{d+1}_+(x_1) \setminus \{\hat{x}_2\} \setminus \{\hat{x}_1\}} E(x_2) \]
and therefore, applying Lemma 1 twice,
\[\nu(E'_d(x)) \leq (1 - \epsilon^{d+1})^2\nu(E(x)). \]
An iteration of these arguments gives \(\nu(E'_d(x)) \leq (1 - \epsilon^{d+1})^n\nu(E(x)) \) for all \(n \).
Since \(1 - \epsilon^{d+1} \leq 1 \), it follows that \(\nu(E'_d(x)) = 0 \).

Finally, we show that \(\nu(A_+) = \nu(A_-) = 0 \). Since \(\pi^{-1}(J(A_+)) \) and \(\pi^{-1}(J(A_-)) \) are invariant under the shift and disjoint, and \(\mu \) is ergodic, at least one of them has \(\mu \)-measure zero; then at least one of the sets \(A_+ \) and \(A_- \) has zero \(\nu \)-measure, since \(\mu(\pi^{-1}(J(A_\pm))) \) is comparable to \(\nu(A_\pm) \), by Lemma 2. On the other hand, the reflection on the line through \(p \) perpendicular to \(x_0 \) exchanges \(A_+ \) with \(A_- \), leaving \(\Omega \) and \(\nu \) invariant; thus \(\nu(A_+) = \nu(A_-) \). Thus \(\nu(A_\pm) = 0 \).

References

(F. Di Biase and B. Fischer) Department of Mathematics, Princeton University, Princeton, New Jersey 08544
E-mail address: biase@math.princeton.edu
E-mail address: fischer@math.princeton.edu

Room 2C-254, Bell Labs, Lucent Technologies, 600 Mountain Avenue, Murray Hill, New Jersey 07974
E-mail address: ruediger@research.bell-labs.com

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use