Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Spectral averaging and the Krein spectral shift

Author: Barry Simon
Journal: Proc. Amer. Math. Soc. 126 (1998), 1409-1413
MSC (1991): Primary 47B10, 47A60
MathSciNet review: 1443857
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a new proof of a theorem of Birman and Solomyak that if $A(s) = A_{0} + sB$ with $B\geq 0$ trace class and $d\mu _{s} (\cdot ) = \text{Tr}(B^{1/2} E_{A(s)}(\cdot ) B^{1/2})$, then $\int ^{1}_{0} [d\mu _{s} (\lambda )]\, ds = \xi (\lambda )\, d\lambda $, where $\xi $ is the Krein spectral shift from $A(0)$ to $A(1)$. Our main point is that this is a simple consequence of the formula $\frac{d}{ds} \text{Tr}(f(A(s))=\text{Tr}(Bf'(A(s)))$.

References [Enhancements On Off] (What's this?)

  • 1. M. Birman and M. Solomyak, Remarks on the spectral shift function, J. Soviet Math. 3 (1975), 408-419. MR 47:4031
  • 2. I. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonself-Adjoint Operators in Hilbert Space, Nauka, Moscow, 1965; English transl., Amer. Math. Soc., Providence, RI, 1969. MR 36:3137; MR 39:7447.
  • 3. V.A. Javrjan, A certain inverse problem for Sturm-Liouville operators, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), 246-251. (Russian) MR 46:723
  • 4. S. Kotani, Lyapunov exponents and spectra for one-dimensional random Schrödinger operators, Contemporary Math., vol. 50, Amer. Math. Soc. Providence, RI, 1984, pp. 277-286. MR 88a:60116
  • 5. M.G. Krein, On the trace formula in perturbation theory, Matem. Sborn. 33 (1953), 597-626. (Russian) MR 15:720b
  • 6. M.G. Krein, On perturbation determinants and a trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR 144 (1962), 268-271; English transl., Soviet Math. Dokl. 3 (1962), 707-710. MR 25:2446
  • 7. M.G. Krein, New investigations in the perturbation theory of self-adjoint operators, First Math. Summer School (Kanev, 1963), Part I, ``Naukova Dumka'', Kiev, 1964, pp. 103-187; English transl., M. G. Krein, Topics in integral and differential equations and operator theory, Birkhäuser, Basel, 1983, pp. 107-172. MR 32:2119; MR 86m:00014
  • 8. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526. MR 86b:81001a
  • 9. B. Simon, Spectral analysis and rank one perturbations and applications, CRM Lecture Notes Vol. 8 (J. Feldman, R. Froese, L. Rosen, eds.), Amer. Math. Soc., Providence, RI, 1995, pp. 109-149. MR 97c:47008
  • 10. F. Wegner, Bounds on the density of states in disordered systems, Z. Phys. B 44 (1981), 9-15. MR 83b:82060

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B10, 47A60

Retrieve articles in all journals with MSC (1991): 47B10, 47A60

Additional Information

Barry Simon
Affiliation: Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125

Received by editor(s): October 14, 1996
Additional Notes: This material is based upon work supported by the National Science Foundation under Grant No. DMS-9401491. The government has certain rights in this material.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 Barry Simon

American Mathematical Society