ON THE TOPOLOGICAL BOUNDARY
OF SEMI-FREDHOLM OPERATORS

HAÏKEL SKHIRI

(Communicated by Palle E. T. Jorgensen)

Abstract. We prove several distance formulas from a fixed operator in $B(H)$ to some classes of operators connected with the semi-Fredholm ones. Here H is a separable Hilbert space. In particular, Fredholm and upper and lower semi-Fredholm operators have the same boundary in $B(H)$.

Let H be a separable Hilbert space and let $B(H)$ be the algebra of all bounded linear operators on H. For an operator $T \in B(H)$, we will denote by T^*, $R(T)$, $N(T)$ and $\sigma(T)$ its adjoint, range, kernel and spectrum, respectively. Let $K(H)$ be the ideal of compact operators and $C(H) = B(H)/K(H)$ be the Calkin algebra. Denote by $\pi : B(H) \to C(H)$ the canonical projection. Endowed with the essential norm $|||T|||_e = |||\pi(T)|||$, $C(H)$ is a C^*-algebra.

The index of an operator $T \in B(H)$ will be denoted by $\text{ind}(T)$ and is defined by $\text{ind}(T) = \dim N(T) - \dim N(T^*)$, with the convention $\infty - \infty = 0$.

We introduce the following notation for several classes of operators:

- $F_+ = \{ T \in B(H) : R(T) \text{ is closed}, \dim N(T) < \infty \}$ is the set of all upper semi-Fredholm operators.
- $F_- = \{ T \in B(H) : R(T) \text{ is closed}, \dim N(T^*) < \infty \}$ is the set of all lower semi-Fredholm operators.
- $F_{\pm} = F_+ \cup F_-$ is the set of semi-Fredholm operators.
- $F = F_+ \cap F_-$ is the set of Fredholm operators.
- $I_n = \{ T \in B(H) : \text{ind}(T) = n \}$ with $n \in \mathbb{Z} = \mathbb{Z} \cup \{-\infty, +\infty\}$.
- $I^n = F_{\pm} \cap I_n$, with $n \in \mathbb{Z}$, the connected component of index n in F_{\pm}.

For a set X in $B(H)$, we will denote by $\text{int}X$, \overline{X} and ∂X the interior, closure and (topological) boundary, respectively.

For a linear operator $T \in B(H)$, we will denote by $\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \notin F \}$ the essential spectrum of T. Let

$$m_e(T) = \inf\{\sigma_e(||T||)\}$$

(cf. [1]), where $||T|| = (T^*T)^{1/2}$, and

$$M_e(T) = \max\{m_e(T); m_e(T^*)\}.$$

Using Theorem 1.1 of [4] and Theorem 3.1 of [7], we easily obtain the following result:

Received by the editors April 30, 1996 and, in revised form, October 14, 1996.

1991 Mathematics Subject Classification. Primary 47A53; Secondary 47A55.
Key words and phrases. Hilbert space operators, semi-Fredholm operators, distance formulas.
Theorem 1. Let $T \in B(H)$ and $n \in \mathbb{Z}$. Then
\[
\text{dist}(T, F^n_{\pm}) = \begin{cases}
M_e(T) & \text{if } T \notin I_n, \\
0 & \text{if not.}
\end{cases}
\]

We recall the following theorem, which gives a characterization of the boundary of connected components of semi-Fredholm operators.

Theorem 2 ([5], Corollary 1.4). The boundary of F^j_{\pm} does not depend on j, and, if $\Delta = \partial F^j_{\pm}$, then $\Delta = \partial F^j_{\pm}$ and $B(H) = \Delta \cup \left(\bigcup_{j \in \mathbb{Z}} F^j_{\pm} \right)$.

Remarks. 1) We have $\Delta = \{ T \in B(H) : M_e(T) = 0 \}$. Indeed, using [4], Theorem 2.1 and Corollary 2.2, we obtain $\Delta = \partial F^0_{\pm} = \partial G = \{ T \in B(H) : M_e(T) = 0 \}$, where G is the group of invertible operators in $B(H)$.

2) The set Δ is stable with respect to compact perturbations: $\Delta + K(H) = \Delta$.

3) The set Δ is arcwise connected. Indeed, if $0 \in \Delta$ and $T \in \Delta$, then $tT \in \Delta$ for all $t \in [0, 1]$.

We prove now the following result.

Theorem 3. Let $T \in B(H)$ and $J \subseteq \mathbb{Z}$. Then
\[
\text{(a) dist} \left(T, \bigcup_{j \in J} F^j_{\pm} \right) = \begin{cases}
M_e(T) & \text{if ind}(T) \notin J, \\
0 & \text{if not,}
\end{cases}
\]

and
\[
\text{(b) dist} \left(T, \bigcup_{j \in J} I_j \right) = \begin{cases}
M_e(T) & \text{if ind}(T) \notin J, \\
0 & \text{if not.}
\end{cases}
\]

Proof. (a) Let $n = \text{ind}(T) \in \mathbb{Z}$. If $n \in J$, then $F^n_{\pm} \subseteq \bigcup_{j \in J} F^j_{\pm}$. Therefore
\[
0 \leq \text{dist}(T, \bigcup_{j \in J} F^j_{\pm}) \leq \text{dist}(T, F^n_{\pm}).
\]

But, using Theorem 1, we obtain $\text{dist}(T, F^n_{\pm}) = 0$. Hence, $\text{dist}(T, \bigcup_{j \in J} F^j_{\pm}) = 0$.

Suppose now that $n \notin J$ and let $j_0 \in J$. Then, using once again Theorem 1 and the relation $n \neq j_0$, we get
\[
\text{dist} \left(T, \bigcup_{j \in J} F^j_{\pm} \right) \leq \text{dist}(T, F^n_{\pm}) = M_e(T).
\]
We now show the converse inequality. For every $S \in \bigcup_{j \in J} F^j_{\pm}$, we have $\text{ind}(S) \neq n = \text{ind}(T)$. Then Theorem 1.1 of [6] implies $\|T - S\| \geq M_e(T)$. Therefore,

$$\text{dist}\left(T, \bigcup_{j \in J} F^j_{\pm}\right) \geq M_e(T),$$

and (a) is proved.

In order to prove (b), it suffices to remark that $\bigcup_{j \in J} F^j_{\pm} \subseteq \bigcup_{j \in J} I_j$ and to use (a). Indeed, if $\text{ind}(T) = n \in J$, then, using (a), we obtain

$$0 \leq \text{dist}\left(T, \bigcup_{j \in J} I_j\right) \leq \text{dist}\left(T, \bigcup_{j \in J} F^j_{\pm}\right) = 0.$$

On the other hand, if $n \notin J$, then for all $S \in \bigcup_{j \in J} I_j$, we have $\|T - S\| \geq M_e(T)$ (cf. [6], Theorem 1.1). This yields

$$\text{dist}\left(T, \bigcup_{j \in J} I_j\right) \geq M_e(T).$$

Using (a) again, we also find that

$$\text{dist}\left(T, \bigcup_{j \in J} I_j\right) \leq \text{dist}\left(T, \bigcup_{j \in J} F^j_{\pm}\right) = M_e(T),$$

which completes the proof.

As consequences, the results below easily follow. Assertions (b) and (c) of the following corollary are also in [2, Theorems 12 and 13].

Corollary 4. Let $T \in B(H)$. Then:

(a) $\text{dist}(T, F) = \begin{cases} M_e(T) & \text{if } \text{ind}(T) = \pm\infty, \\ 0 & \text{if not.} \end{cases}$

(b) $\text{dist}(T, F_+) = \begin{cases} m_e(T^*) & \text{if } \text{ind}(T) = +\infty, \\ 0 & \text{if } \text{ind}(T) \neq +\infty. \end{cases}$

(c) $\text{dist}(T, F_-) = \begin{cases} m_e(T) & \text{if } \text{ind}(T) = -\infty, \\ 0 & \text{if } \text{ind}(T) \neq -\infty. \end{cases}$

Proof. (a) follows from Theorem 3 above with $J = \mathbb{Z}$, while (b) and (c) follow from [2, Lemma 7] and Theorem 3 above with $J = \mathbb{Z} \cup \{-\infty\}$ and $J = \mathbb{Z} \cup \{+\infty\}$, respectively.

Now we can prove the following equalities.

Theorem 5. Let $J \subseteq \mathbb{Z}$. Then

(a)
$$\bigcup_{j \in J} F_j^\pm = \Delta \cup \left(\bigcup_{j \in J} F_j^1 \right) = \bigcup_{j \in J} F_j^1;$$

(b)
$$\partial \left(\bigcup_{j \in J} F_j^\pm \right) = \Delta.$$

Proof.
(a) We prove the first equality. If $J = \mathbb{Z}$, then the result follows from Theorem 2 since $\bigcup_{j \in J} F_j^\pm = B(H)$.

Suppose that $J \neq \mathbb{Z}$. Then, using Theorem 2 again, we have

$$B(H) = \Delta \cup \left(\bigcup_{j \in J} F_j^1 \right) \cup \left(\bigcup_{j \in \mathbb{Z} \setminus J} F_j^1 \right).$$

It follows that $\Delta \cup \left(\bigcup_{j \in J} F_j^1 \right)$ is closed, being the complement of the open set $\left(\bigcup_{j \in \mathbb{Z} \setminus J} F_j^1 \right)$ in $B(H)$. Therefore

$$\bigcup_{j \in J} F_j^1 \subseteq \Delta \cup \left(\bigcup_{j \in J} F_j^1 \right).$$

In order to show the other inclusion, it suffices to see that $\Delta \subseteq \bigcup_{j \in J} F_j^1$ (see Theorem 3).

The second equality follows from

$$\bigcup_{j \in J} F_j^\pm = \bigcup_{j \in J} \left(\Delta \cup F_j^1 \right).$$

(b) Since $\bigcup_{j \in J} F_j^1$ is open in $B(H)$, we have

$$\partial \left(\bigcup_{j \in J} F_j^\pm \right) = \left(\bigcup_{j \in J} F_j^\pm \right) \setminus \left(\bigcup_{j \in J} F_j^\pm \right) = \left(\Delta \cup \left(\bigcup_{j \in J} F_j^1 \right) \right) \setminus \left(\bigcup_{j \in J} F_j^1 \right) = \Delta.$$

The proof is complete.

This easily implies the following consequence:

Corollary 6. We have

(a)
$$\overline{F} = F \cup \Delta; \quad F_+ = F_+ \cup \Delta \quad \text{and} \quad F_- = F_- \cup \Delta;$$

(b)
$$\partial F = \partial F_+ = \partial F_- = \Delta.$$

We also have

Corollary 7. Let $J \subseteq \mathbb{Z}$. Then

$$\bigcup_{j \in J} I_j = \Delta \cup \left(\bigcup_{j \in J} F_j^1 \right) = \Delta \cup \left(\bigcup_{j \in J} I_j \right).$$
Proof. Using Theorems 3 and 5, we obtain
\[\Delta \cup \left(\bigcup_{j \in J} I_j \right) \subseteq \bigcup_{j \in J} F_j^3 = \Delta \cup \left(\bigcup_{j \in J} F_j^3 \right) \subseteq \Delta \cup \left(\bigcup_{j \in J} I_j \right). \]

For the interior and for the boundary of the closure of sets considered in Theorem 5, we have

Theorem 8. Let \(J \subseteq \mathbb{Z}, J \neq \mathbb{Z} \). Then

(a) \(\text{int} \left(\bigcup_{j \in J} F_j^3 \right) = \bigcup_{j \in J} F_j^3 = \text{int} \left(\bigcup_{j \in J} F_j^3 \right) \);

(b) \(\partial \left(\bigcup_{j \in J} F_j^3 \right) = \partial \left(\bigcup_{j \in J} F_j^3 \right) = \Delta. \)

Proof. (a) We show the first equality. The inclusion
\[\bigcup_{j \in J} F_j^3 \subseteq \text{int} \left(\bigcup_{j \in J} F_j^3 \right) \]

is clear. In order to show the other one, let \(T \in \text{int} \left(\bigcup_{j \in J} F_j^3 \right) \). If \(T \) is semi-Fredholm, then \(T \in \bigcup_{j \in J} F_j^3 \). Indeed, using Theorem 5, we have
\[T \in \text{int} \left(\bigcup_{j \in J} F_j^3 \right) = \text{int} \left(\Delta \cup \bigcup_{j \in J} F_j^3 \right) \subseteq \Delta \cup \left(\bigcup_{j \in J} F_j^3 \right) \]

and, because \(T \notin \Delta \), we get \(T \in \bigcup_{j \in J} F_j^3 \).

Suppose now that \(T \) is not semi-Fredholm. Then \(T \in \Delta \). Consider \(n \notin J \) (this is always possible since \(J \neq \mathbb{Z} \)). Using Theorem 2, we obtain \(T \in \Delta = \partial F_n^3 \). Therefore
\[T \in \text{int} \left(\bigcup_{j \in J} F_j^3 \right) \cap \partial F_n^3, \]

which implies the non-voidness of \(\left(\bigcup_{j \in J} F_j^3 \right) \cap F_n^3 \). The continuity of the index yields a contradiction.

The second equality follows from Theorem 5.
(b) Using (a) and Theorem 5, we obtain
\[\partial \left(\bigcup_{j \in J} F_{\pm}^j \right) = \partial \left(\bigcup_{j \in J} F_{\pm}^j \right) \]
\[= \left(\bigcup_{j \in J} F_{\pm}^j \right) \cap \text{int} \left(\bigcup_{j \in J} F_{\pm}^j \right) \]
\[= \left(\Delta \cup \left[\bigcup_{j \in J} F_{\pm}^j \right] \right) \cap \left(\bigcup_{j \in J} F_{\pm}^j \right) = \Delta.\]

The proof is complete. ■

The following consequence can be easily obtained.

Corollary 9. We have
(a) \(\text{int}(F) = F\); \(\text{int}(F_+) = F_+\) and \(\text{int}(F_-) = F_-\);
and
(b) \(\partial F = \partial F_- = \partial F_+ = \partial F_- = \partial F_+ = \Delta\).

We also have

Corollary 10. Let \(J \subseteq \mathbb{Z}, J \neq \mathbb{Z}\). Then
(a) \(\text{int} \left(\bigcup_{j \in J} I_j \right) = \bigcup_{j \in J} F_{\pm}^j = \text{int} \left(\bigcup_{j \in J} I_j \right) \);
(b) \(\partial \left(\bigcup_{j \in J} I_j \right) = \partial \left(\bigcup_{j \in J} I_j \right) = \Delta.\)

Proof. (a) The first equality follows from Corollary 7 and Theorems 5 and 8.
For the second equality, it is sufficient to note that
\[\bigcup_{j \in J} F_{\pm}^j \subseteq \text{int} \left(\bigcup_{j \in J} I_j \right) \subseteq \text{int} \left(\bigcup_{j \in J} F_{\pm}^j \right) = \bigcup_{j \in J} F_{\pm}^j.\]
Indeed, the first two inclusions are obvious and the last equality is (a).
(b) is a direct consequence of (a) and of Corollary 7. ■

We introduce the following notation:
• \(G_+ = \{ T \in B(H) : T \text{ is left invertible} \}\).
• \(G_- = \{ T \in B(H) : T \text{ is right invertible} \}\).
• \(G_{\pm} = G_+ \cup G_- \): the set of one-sided invertible operators.
• \(G = G_+ \cap G_- \): the set of invertible operators.

For \(n \in \mathbb{Z}\), let \(G^n_{\pm} = G_{\pm} \cap I_n\). For \(n \in \mathbb{Z}_- = \mathbb{Z}_- \cup \{ -\infty \}\), we denote \(G^n_+ = G_+ \cap I_n\),
while for \(n \in \mathbb{Z}_+ = \mathbb{Z}_+ \cup \{ +\infty \}\), we set \(G^n_- = G_- \cap I_n\).

Theorem 11. Let \(T \in B(H)\) and \(J \subseteq \mathbb{Z}\). Then
\[\text{dist} \left(T, \bigcup_{j \in J} G_{\pm}^j \right) = \begin{cases} M_c(T) & \text{if ind}(T) \notin J, \\ 0 & \text{if not.} \end{cases}\]
Proof. Let \(n = \text{ind}(T) \). If \(n \in J \), then \(G^+_n \subseteq \bigcup_{j \in J} G^j_\pm \), so, using Theorem 3.1 of [7], we have

\[
0 \leq \text{dist}\left(T, \bigcup_{j \in J} G^j_\pm \right) \leq \text{dist}(T, G^+_n) = 0.
\]

Suppose now that \(n \notin J \). Let \(j_0 \in J \). Using Theorem 3.1 of [7], we get

\[
0 \leq \text{dist}\left(T, \bigcup_{j \in J} G^j_\pm \right) \leq \text{dist}(T, G^{j_0}_\pm) = M_e(T).
\]

On the other hand, for all \(L \in \bigcup_{j \in J} G^j_\pm \), \(\text{ind}(L) \neq n = \text{ind}(T) \). Therefore, using Theorem 1.1 of [6], we have

\[
\|T - L\| \geq M_e(T).
\]

Thus

\[
\text{dist}\left(T, \bigcup_{j \in J} G^j_\pm \right) \geq M_e(T).
\]

Now (1) and (2) imply the desired equality. \(\square \)

We obtain the following consequence.

Corollary 12. Let \(T \in B(H) \), and \(J \subseteq \mathbb{Z}_+ \). Then

\[
\text{dist}\left(T, \bigcup_{j \in J} G^j_- \right) = \begin{cases} M_e(T) & \text{if } \text{ind}(T) \notin J, \\ 0 & \text{if } \text{ind}(T) \in J. \end{cases}
\]

A similar result can be stated for \(\text{dist}(T, \bigcup_{j \in J} G^j_+) \) if \(J \subseteq \mathbb{Z}_- \). For the distance of \(T \) to the set \(G_- \setminus G \) we obtain the following formula:

Corollary 13. Let \(T \in B(H) \). Then

\[
\text{dist}(T, G_- \setminus G) = \begin{cases} M_e(T) & \text{if } \text{ind}(T) \leq 0, \\ 0 & \text{if not}. \end{cases}
\]

The following result gives a description of the closure, the interior and the boundary of \(\bigcup_{j \in J} G^j_\pm \) for \(J \subseteq \mathbb{Z} \).

Theorem 14. Let \(J \subseteq \mathbb{Z} \). Then:

(a) \(\bigcup_{j \in J} G^j_\pm = \Delta \cup \left(\bigcup_{j \in J} F^j_\pm \right) = \bigcup_{j \in J} G^j_\pm \).

If in addition \(J \neq \mathbb{Z} \), then:

(b) \(\text{int}\left(\bigcup_{j \in J} G^j_\pm \right) = \bigcup_{j \in J} F^j_\pm = \text{int}\left(\bigcup_{j \in J} G^j_\pm \right) \),

(c) \(\partial\left(\bigcup_{j \in J} G^j_\pm \right) = \partial\left(\bigcup_{j \in J} G^j_\pm \right) = \Delta. \)
Proof. (a) We prove the first equality. If $J = \mathbb{Z}$, then, using [3, Problem 109], G_{\pm} is dense in $B(H)$ and the result follows from Theorem 2.

Suppose now that $J \neq \mathbb{Z}$. Using Theorem 5, we obtain that $\Delta \cup \left(\bigcup_{j \in J} F^j_{\pm} \right)$ is closed. But $\bigcup_{j \in J} G^j_{\pm} \subseteq \Delta \cup \left(\bigcup_{j \in J} F^j_{\pm} \right)$. Thus

(1) $\bigcup_{j \in J} G^j_{\pm} \subseteq \Delta \cup \left(\bigcup_{j \in J} F^j_{\pm} \right)$.

On the other hand, using Theorem 11, we have:

(2) $\Delta \cup \left(\bigcup_{j \in J} F^j_{\pm} \right) \subseteq \bigcup_{j \in J} G^j_{\pm}$.

The first equality follows from (1) and (2).

The second equality follows from $G^j_{\pm} = F^j_{\pm}$, for all $j \in \mathbb{Z}$. This follows easily from Theorem 1 and Theorem 11.

(b) is a direct consequence of (a), Theorem 5 and Theorem 8.

(c) Since the first equality follows from (a) and (b), it sufficient to show the second one. Using (a) and (b), we have

$$\partial \left(\bigcup_{j \in J} G^j_{\pm} \right) = \left(\Delta \cup \left(\bigcup_{j \in J} F^j_{\pm} \right) \right) \setminus \left(\bigcup_{j \in J} F^j_{\pm} \right) = \Delta.$$

The proof is complete.

We obtain as consequences the following formulas:

Corollary 15. 1) a) $G_+ = \Delta \cup \left(\bigcup_{j \leq 0} F^j_{\pm} \right)$,

b) $G_- = \Delta \cup \left(\bigcup_{j \geq 0} F^j_{\pm} \right)$;

2) a) $\text{int}(G_+) = \bigcup_{j \geq 0} F^j_{\pm}$,

b) $\text{int}(G_-) = \bigcup_{j \leq 0} F^j_{\pm}$;

3) $\partial G_+ = \partial G_- = \Delta$.

Corollary 16. 1) a) $G_+ \setminus G = \Delta \cup \left(\bigcup_{j < 0} F^j_{\pm} \right)$,

b) $G_- \setminus G = \Delta \cup \left(\bigcup_{j > 0} F^j_{\pm} \right)$;

2) a) $\text{int}(G_+ \setminus G) = \bigcup_{j < 0} F^j_{\pm}$,

b) $\text{int}(G_- \setminus G) = \bigcup_{j > 0} F^j_{\pm}$;

3) $\partial (G_+ \setminus G) = \partial (G_- \setminus G) = \Delta$.

Similar formulas can be given for $\bigcup_{j \in J} G^j_{\pm}, J \subseteq \mathbb{Z}_-$, and for $\bigcup_{j \in J} G^j_{\pm}, J \subseteq \mathbb{Z}_+$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Acknowledgement

I would like to thank my supervisor, M. Mbekhta, for his guidance, and C. Badea for his help.

References

DÉPARTEMENT DE MATHEMATHIQUES, BÂT. M2, UNIVERSITÉ DE LILLE I, F–59655 VILLENEUVE D’ASCO, FRANCE

E-mail address: skhiri@gat.univ-lille1.fr