HAUSDORFF DIMENSION AND DOUBLING MEASURES
ON METRIC SPACES

JANG-MEI WU

(Communicated by Albert Baernstein II)

Abstract. Vol’berg and Konyagin have proved that a compact metric space
 carries a nontrivial doubling measure if and only if it has finite uniform metric
dimension. Their construction of doubling measures requires infinitely many
adjustments. We give a simpler and more direct construction, and also prove
that for any $\alpha > 0$, the doubling measure may be chosen to have full measure
on a set of Hausdorff dimension at most α.

Let (X, ρ) be a compact metric space. Vol’berg and Konyagin proved in [VK]
that (X, ρ) carries a nontrivial doubling measure μ (there exists $\Lambda \geq 1$ so that
$\mu(B(x, 2r)) \leq \Lambda \mu(B(x, r))$ for all $x \in X$ and $r > 0$) if and only if (X, ρ) has finite
uniform metric dimension (in each ball $B(x, 2r)$, there exist at most N points with
mutual distances at least r). Here $B(x, r) = \{y : \rho(x, y) < r\}$.

Assume that (X, ρ) has finite uniform metric dimension. The construction of
doubling measures in [VK] requires infinitely many adjustments which cannot be
predicted in advance. In this note, we give a simpler and more direct construction,
and prove that given any $\alpha > 0$, there exists a doubling measure on X that has
full measure on a set of Hausdorff dimension at most α. Also we observe that a
doubling measure may be concentrated on a countable set even when X is a set on
the real line of positive length. Some ideas have been adapted from [FKP], [VK]
and [T].

1. Theorems and examples

Assume, from now on, that (X, ρ) is a compact metric space of finite uniform
metric dimension and that $\text{diam } X < 1$.

For each $k \geq 0$, let $S_k = \{x_{k,j} : 1 \leq j \leq J(k)\}$ be a maximal 10^{-k}-net on X
(points in S_k having mutual distances at least 10^{-k}, and points outside S_k
having distances less than 10^{-k} to S_k), satisfying

$$S_0 \subseteq S_1 \subseteq \cdots \subseteq S_k \subseteq S_{k+1} \subseteq \cdots.$$

Note that S_0 has only one point $x_{0,1}$. For each $k \geq 0$, let $\{T_{k,j} : 1 \leq j \leq J(k)\}$ be a partition of S_{k+1} satisfying

$$S_{k+1} \cap B(x_{k,j}, 10^{-k}/2) \subseteq T_{k,j} \subseteq S_{k+1} \cap B(x_{k,j}, 10^{-k}).$$
We call elements of $T_{k,j}$ branch points of $x_{k,j}$, the element $x_{k,j}$ an old branch point and the rest new branch points. Since X has finite uniform metric dimension, $T_{k,j}$ has at most N^4 elements.

Let $M \geq N^4$, and let $w_{k,j}$ be weights at $x_{k,j}$ ($k \geq 1$) so that

$$M^{-1} \leq w_{k,j} \leq 1,$$

and

$$\sum_{x_{k+1,i} \in T_{k,j}} w_{k+1,i} = 1.$$

Theorem 1. Assume that μ_k ($k \geq 0$) are measures on X with total mass concentrated on S_k, defined as follows: μ_0 is the unit point measure at $x_{0,1}$; after μ_k is chosen, μ_{k+1} is defined by distributing the mass from $x_{k,j}$ to its branch points in $T_{k,j}$ so that

$$\mu_{k+1}(\{x_{k+1,i}\}) = w_{k+1,i} \mu_k(\{x_{k,j}\}), \quad x_{k+1,i} \in T_{k,j}.$$

Then $\{\mu_k\}$ converges in the weak star topology to a doubling measure μ on (X, ρ) with

$$\mu(B(x, 2r)) \leq M^3 N^8 \mu(B(x, r))$$

for each $x \in X$ and $r > 0$.

This construction works because of (1.3)—the weight being a constant at all new branch points in any given generation. This allows us to compare measures of any two nearby branch points, regardless of their ancestors.

When M is large, with a suitable choice of weights, the measure μ is concentrated on a small set. The next theorem extends a result of Tukia [T] on Euclidean space to metric spaces.

Theorem 2. Given $\alpha > 0$, there exists a doubling measure on (X, ρ) that has full measure on a set of Hausdorff dimension at most α.

Recall that the β-dimensional Hausdorff content of a set E in X is the number $H_\beta(E) = \inf \sum_j r_j^\beta$, where the infimum is taken over all countable covers of E by balls of radii r_j. The Hausdorff dimension of a set E is $\inf \{\beta : \beta(E) = 0\}$.

A doubling measure on a ball in an Euclidean space cannot have full measure on a set of zero Hausdorff dimension. In contrast, the following examples exist for sets having no interiors.

Example 1. For each $\alpha \in [0, 1]$, there exists a compact set $X \subseteq \mathbb{R}^1$ of Hausdorff dimension α so that every doubling measure on X is purely atomic.

Example 2. There exists a compact set $X \subseteq \mathbb{R}^1$ of positive length, so that some doubling measures on X are purely atomic.

Both examples are essentially in [KW] and were constructed for another purpose. Let E be the Cantor ternary set on the unit interval, F be the midpoints of all complementary intervals and $X = E \cup F$. Then every doubling measure on X is concentrated on F. A similar construction works for every α in $[0, 1)$. When $\alpha = 1$, we combine an appropriate sequence of such sets together with their limit points.
As for Example 2, let ν be a doubling measure on \mathbb{R}^1 having full measure on a set of zero length as constructed in [BA], and let E be a compact subset contained in $[0, 1]$ having positive length and zero ν-measure. Let \mathcal{W} be a Whitney decomposition of $(-2, 2) \setminus E$, and F be the collection of midpoints of the intervals in \mathcal{W}. Let $X = E \cup F \cup \{-2, 2\}$, and let μ be the measure on X with total mass on F so that at each $x \in F$, $\mu(\{x\})$ is the ν-measure of the corresponding Whitney interval. Then X and μ have the properties required.

For details, see the examples X and Z in [KW].

2. Proof of Theorem 1

Define history h on $\bigcup_{k \geq 1} S_k$ as follows: $h(x) = (x_{0,1}, x)$ on S_1; and for $x \in T_{k,j} \subseteq S_{k+1}$, $h(x)$ is the $(k + 2)$-tuple $(a_0, a_1, \ldots, a_k, x)$, where $(a_0, a_1, \ldots, a_k) = h(x_{k,j})$. We call $a_m (0 \leq m \leq k)$ the m-th generation ancestor of x. These are well-defined because $\{T_{k,j} : 1 \leq j \leq J(k)\}$ is a partition of S_{k+1}.

There is a slight abuse of notation: when $x_{k,j}$ and $x_{\ell,i}$ are the same point in X while considered as branch points in two different generations, $h(x_{k,j})$ and $h(x_{\ell,i})$ have different numbers of components.

For $\ell \geq k + 1$, let

$$T_{k,j}^\ell = \{x \in S_\ell : \text{the } \ell\text{th generation ancestor of } x \text{ is } x_{k,j}\},$$

and call elements of $T_{k,j}^\ell$ the ℓth generation branch points of $x_{k,j}$. Note that $T_{k,j}^{k+1} = T_{k,j}$,

$$T_{k,j}^\ell \subseteq T_{k,j}^{\ell+1},$$

and $\{T_{k,j}^\ell : 1 \leq j \leq J(k)\}$ is a partition of S_ℓ. Denote by

$$T_{k,j}^\infty = \bigcup_{\ell \geq k+1} T_{k,j}^\ell$$

all branch points of $x_{k,j}$, and note that

$$T_{k,j}^\infty \cap T_{m,i}^\infty = \emptyset$$

if neither $x_{k,j}$ nor $x_{m,i}$ is an ancestor of the other.

We claim that for $\ell \geq k + 1$,

$$S_\ell \bigcap B(x_{k,j}, 10^{-k}/3) \subseteq T_{k,j}^\ell \subseteq S_\ell \bigcap B(x_{k,j}, 10^{-k+1}/9);$$

thus

$$\bigcup_{k+1}^\infty S_\ell \bigcap B(x_{k,j}, 10^{-k}/3) \subseteq T_{k,j}^\infty \subseteq B(x_{k,j}, 10^{-k+1}/9).$$

Therefore, any point in $\bigcup_{k+1}^\infty S_\ell$ which is sufficiently close to $x_{k,j}$ is a branch point of $x_{k,j}$, and all branch points of $x_{k,j}$ are not far from $x_{k,j}$. To prove (2.2) let $x \in T_{k,j}^\ell$ and follow along its ancestors since $x_{k,j}$; we have $\rho(x_{k,j}, x) < 10^{-k} + 10^{-k-1} + \cdots + 10^{-k+1} < 10^{-k+1}/9$; this proves the second inclusion in (2.2). If $x_{\ell,i} \in S_\ell \bigcap B(x_{k,j}, 10^{-k}/3)$, then either $x_{\ell,i} = x_{k+1,p}$ or $x_{\ell,i} \in T_{k+1,j}^{k+1}$ for some p. Apply the second inclusion to $x_{k+1,p}$; we have $\rho(x_{\ell,i}, x_{k+1,p}) < 10^{-k}/9$, and hence $\rho(x_{k+1,p}, x_{k,j}) < 10^{-k}/9 + 10^{-k}/3 < 10^{-k}/2$. In view of (1.1), $x_{k+1,p} \in T_{k,j}$ and hence $x_{\ell,i} \in T_{k,j}$; this proves the first inclusion in (2.2).
The convergence of \(\{\mu_k\} \) is now clear.
We note from (1.3), (1.4), (1.5) and (2.1) that for \(\ell \geq k + 1 \),
\begin{equation}
\mu_\ell(T_{k,j}^{\ell}) = \mu_k(\{x_{k,j}\}),
\end{equation}
and
\begin{equation}
\mu_\ell(\{x_{\ell,i}\}) = \left(\prod_{k+1}^\ell w_m \right) \mu_k(\{x_{k,j}\}),
\end{equation}
provided that \(x_{\ell,i} \in T_{k,j}^{\ell} \), and \(x_{\ell,i} \) and all ancestors since the \((k + 1)\)st generation
are new branch points.

The main idea of the proof is contained in the following lemma.

Lemma 1. If \(k \geq 1 \) and \(\rho(x_{k,i}, x_{k,j}) < \frac{2}{9} 10^{-k+3}, \) then
\begin{equation}
\mu_k(\{x_{k,i}\})/\mu_k(\{x_{k,j}\}) \leq M^3.
\end{equation}

Proof. For \(k = 1 \), the estimate follows from (1.2) and (1.5). Assume \(k \geq 2 \) and let
\(h(x_{k,i}) = (a_0, a_1, \ldots, a_{k-1}, x_{k,i}), h(x_{k,j}) = (b_0, b_1, \ldots, b_{k-1}, x_{k,j}) \). Denote by \(k_0 \) the
largest index for which \(a_{k_0} = b_{k_0} \).

If \(k_0 < k - 3 \), we claim that \(a_m \) and \(b_m \) are new branch points in \(S_m \) for each \(m \) in \([k_0 + 2, k - 2]\). Otherwise, assume that \(a_m \) is an old branch point in \(S_m \); thus \(a_m \) and \(a_{m-1} \) are the same point in \(X \). Because \(a_m \) is an ancestor of \(x_{k,i} \),
it follows from (2.2) that \(\rho(x_{k,i}, a_m) < 10^{-m+1}/9 \). Because \(a_{m-1} \neq b_m \), \(a_{m-1} \) is not an ancestor of \(x_{k,j} \); from (2.2) again, we have \(\rho(x_{k,j}, a_{m-1}) > 10^{-m+1}/3, \)Thus \(\rho(x_{k,i}, x_{k,j}) > 10^{-m+1}/3 - 10^{-m+1}/9 > \frac{2}{9} 10^{-k+3} \), which is a contradiction.

Therefore \(a_m \) and similarly \(b_m \), is a new branch point. In view of (2.4),
\begin{equation}
\mu_{k-2}(\{a_{k-2}\}) = \left(\prod_{k+2}^{k-2} u_\ell \right) \mu_{k+1}(\{a_{k+1}\})
\end{equation}
and
\begin{equation}
\mu_{k-2}(\{b_{k-2}\}) = \left(\prod_{k+2}^{k-2} u_\ell \right) \mu_{k+1}(\{b_{k+1}\}).
\end{equation}

As \(a_{k+1} \) and \(b_{k+1} \) are branch points of \(a_{k_0} = b_{k_0} \), \(\mu_{k+1}(\{a_{k+1}\})/\mu_{k+1}(\{b_{k+1}\}) \)
\begin{equation}
\leq M \text{ by (1.2) and (1.5); similarly } M^{-2} \leq \mu_{k-2}(\{x_{k,i}\})/\mu_{k-2}(\{x_{k,j}\}) \leq 1 \text{ and } M^{-2}
\leq \mu_{k-2}(\{x_{k,j}\})/\mu_{k-2}(\{x_{k,i}\}) \leq 1 \text{. From these, (2.5) follows.}
\end{equation}

If \(k_0 \geq k - 3, \) (2.5) holds because of (1.2) and (1.5).

Given \(x \in X \) and \(r > 0 \), we shall prove (1.6). Assume that \(10^{-k} < r \leq 10^{-k+1} \)
for some \(k \geq 1 \). Because \(S_{k+1} \) is a maximal net, \(\rho(x, x_{k+1,p}) \leq 10^{-k-1} \) for some \(p \)
and \(T_{k+1,p}^{\infty} \subseteq B(x_{k+1,p}, 10^{-k}/9) \subseteq B(x, r/4) \). Therefore, by (2.3),
\begin{equation}
\mu(B(x, r/2)) \geq \mu(\bigcup_{k+1}^{\infty} T_{k+1,p}^{\infty}) \geq \mu_{k+1}(\{x_{k+1,p}\}).
\end{equation}

Let \(J \) be the set of \(j \)'s so that \(x_{k+1,j} \in B(x, 2r) \); then \(J \) contains at most \(N^8 \)
elements. We claim that
\begin{equation}
S_\ell \cap B(x, 3r/2) \subseteq \bigcup_{J} T_{k+1,j}^{\ell} \text{ for each } \ell \geq k + 2.
\end{equation}
In fact, given \(x_{\ell,i} \in B(x, 3r/2) \), \(x_{\ell,i} \) is contained in \(T_{k+1,q}^\ell \) for some \(q \). Since \(T_{k+1,q} \subseteq B(x_{k+1,q}, 10^{-k}/9) \), we have \(\rho(x_{k+1,q}, x) \leq \rho(x_{k+1,q}, x_{\ell,i}) + \rho(x_{\ell,i}, x) < 10^{-k}/9 + 3r/2 < 2r \). Thus \(q \in J \). This proves (2.7). Therefore

\[
\mu_\ell(B(x, 3r/2)) \leq \sum_j \mu_\ell(T_{k+1,j}^\ell) = \sum_J \mu_{k+1}\{(x_{k+1,j})\}
\]

for each \(\ell \geq k + 2 \). Since \(\rho(x_{k+1,p}, x_{k+1,j}) \leq \rho(x_{k+1,p}, x) + \rho(x, x_{k+1,j}) < 10^{-k-1} + 2r < \frac{5}{3}10^{-k+1} \), we deduce from (2.5) and (2.6) that

\[
\mu_\ell(B(x, 3r/2)) \leq M^3N^8\mu(B(x, r/2)).
\]

From this, (1.6) follows. And this proves Theorem 1.

\[\square\]

3. Proof of Theorem 2

For \(x \in S_k \), recall that \(h(x) \) has the form \((x_{0,1}, a_1, a_2, \ldots, a_{k-1}, a_k)\) and that the first element \(x_{0,1} \) is not a branch point. For \(k \geq 1 \) and \(0 \leq p \leq k \), denote by

\[S_k(p) = \{ x \in S_k : h(x) \text{ contains exactly } p \text{ old branch points} \}. \]

There are exactly \(\binom{k}{p} \) different ways to position \(p \) old branch points in \(h(x) \); afterwards there are at most \((N - 1)^{k-p}\) different ways to place new branch points in the remaining slots. Therefore \(S_k(p) \) has at most \(\binom{k}{p}(N - 1)^{k-p} \) elements. Thus the set

\[\sigma_k(p) = \{ x \in S_k : h(x) \text{ contains at least } p \text{ old branch points} \} \]

has at most \(\sum_{m=p}^{k} \binom{k}{m}(N - 1)^{k-m} \) elements.

Denoting \(\frac{N-1}{M} \) by \(\gamma \), we prove the following.

Lemma 2. If \(k \geq 1 \), then

\[
(3.1) \quad \mu_k(\sigma_k(p)) \geq \sum_{m=p}^{k} \binom{k}{m}(1 - \gamma)^m \gamma^{k-m} \quad \text{for} \quad 0 \leq p \leq k.
\]

Proof. If \(k = 1 \) and \(p = 0 \), then \(\sigma_1(0) = S_1 \) and \(\mu_1(\sigma_1(0)) = 1 \). If \(k = 1 \) and \(p = 1 \), then \(\sigma_1(1) = \{ \text{the old branch point in } S_1 \} \) and \(\mu_1(\sigma_1(1)) \geq 1 - \gamma \). Hence (3.1) holds for \(k = 1 \).

Assume that (3.1) is true for some \(k \geq 1 \). We shall prove the inequality for \(k + 1 \) and all \(p \) in \([0, k + 1]\). If \(p = 0 \), then \(\mu_{k+1}(\sigma_{k+1}(0)) = 1 \). If \(p = k + 1 \), then \(\mu_{k+1}(\sigma_{k+1}(k + 1)) \geq (1 - \gamma)^{k+1} \).

Let \(1 \leq p \leq k \). For \(x \in \sigma_{k+1}(p) \), denote by \(a_1(x) \) the first generation ancestor of \(x \). Then either \(a_1(x) \) is an old branch point and there are at least \(p - 1 \) old branch points in the remaining \(k \) slots in \(h(x) \), or \(a_1(x) \) is a new branch point and there are at least \(p \) old branch points in the remaining \(k \) slots. From the induction
hypothesis, it follows that

\[
\mu_{k+1}(\sigma_{k+1}(p)) = \mu_1(\sigma_1(1)) \sum_{m=p-1}^{k} \binom{k}{m} (1-\gamma)^m \gamma^{k-m} \\
+ (1 - \mu_1(\sigma_1(1))) \sum_{m=p}^{k} \binom{k}{m} (1-\gamma)^m \gamma^{k-m} \\
\geq (1-\gamma) \sum_{m=p-1}^{k} \binom{k}{m} (1-\gamma)^m \gamma^{k-m} + \gamma \sum_{m=p}^{k} \binom{k}{m} (1-\gamma)^m \gamma^{k-m} \\
= \sum_{n=p}^{k+1} \binom{k+1}{n} (1-\gamma)^n \gamma^{k+1-n}.
\]

The inequality follows from the fact that \(\lambda A + (1-\lambda)a \geq (1-\gamma)A + \gamma a\) provided that \(\lambda \geq 1 - \gamma\) and \(A \geq a > 0\). Therefore (3.1) holds for \(k+1\). The lemma is proved.

Assume that \(M\) is large enough so that \(\gamma = \frac{N-1}{M} < \frac{1}{5}\) and

\[
(1 - 2\gamma)^{-1} \gamma (2\gamma)^{-2\gamma} (2N)^{2\gamma} 10^{-\alpha} < 2^{-\alpha}.
\]

Choose \(p\) to be \([1 - 2\gamma]k\) in the remaining part of the proof, and let

\[
\tau_k = \bigcup\{T_{k,j}^{\infty} : x_{k,j} \in \sigma_k(p)\}.
\]

Then for large \(k\),

\[
H_\alpha(\tau_k) \leq \sum_{m=p}^{k} \binom{k}{m} (N-1)^{k-m} (10^{-k+1})^{(1-\gamma)^m \gamma^{k-m}} \\
\leq 10k^k \binom{k}{p} N^{k-p} 10^{-\alpha k} \\
\leq (1 - 2\gamma)^{-(1-2\gamma)k-1/2} (2\gamma)^{-2\gamma k-1/2} (2N)^{2\gamma k} 10^{-\alpha k} \\
< 2^{-\alpha k}.
\]

The third inequality follows from Stirling’s formula \((k! \approx k^{k+1/2}e^{-k}\sqrt{2\pi})\). Note from (3.1) that, for large \(k\),

\[
\mu(\tau_k) \geq \mu_k(\sigma_k(p)) \\
= \sum_{m=p}^{k} \binom{k}{m} (1-\gamma)^m \gamma^{k-m} \\
= 1 - \sum_{m=0}^{p-1} \binom{k}{m} (1-\gamma)^m \gamma^{k-m} \\
> 1 - p \binom{k}{p} (1-\gamma)^p \gamma^{k-p} \\
> 1 - 10 \left(\frac{e}{4}\right)^{\gamma k}.
\]

Here Stirling’s formula is again used in the last estimate.
Let
\[\tau = \bigcap_{K \geq 5} \bigcup_{k \geq K} \tau_k. \]
It follows from (3.2) and (3.3) that
\[H_\alpha(\tau) = 0 \quad \text{and} \quad \mu(\tau) = 1. \]
This proves Theorem 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801