Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A solution to a problem on invertible disjointness preserving operators


Authors: Yuri A. Abramovich and Arkady K. Kitover
Journal: Proc. Amer. Math. Soc. 126 (1998), 1501-1505
MSC (1991): Primary 47B60
DOI: https://doi.org/10.1090/S0002-9939-98-04318-4
MathSciNet review: 1451787
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct an invertible disjointness preserving operator $T$ on a normed lattice such that $T^{-1}$ is not disjointness preserving.


References [Enhancements On Off] (What's this?)

  • [A] Y. A. Abramovich, Multiplicative representation of disjointness preserving operators, Netherl. Acad. Wetensch. Proc. Ser. A 86(1983), 265-279. MR 85f:47040
  • [AVK] Y. A. Abramovich, A. I. Veksler and A. V. Koldunov, Operators preserving disjointness, Dokl. Akad. Nauk SSSR 248(1979), 1033-1036; English transl., Soviet Math. Dokl. 20 (1979), 1089-1093.MR 81e:47034
  • [AB] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York & London, 1985. MR 87h:47086
  • [ABN] J. Araujo, E. Beckenstein and L. Narici, When is a separating map biseparating? Archiv der Math. 67(1996), 395-407. MR 97f:47026
  • [FH] J. J. Font and S. Hernandez, On separating maps between locally compact spaces, Archiv der Math. 63(1994), 158-165. MR 95k:46083
  • [HL] C. B. Huijsmans and W. A. J. Luxemburg, ed., Positive Operators and Semigroups on Banach Lattices, Kluwer, Dordrecht, 1992. MR 93e:47003
  • [HP] C. B. Huijsmans and B. de Pagter, Invertible disjointness preserving operators, Proceed. Edinburgh. Math. Soc. (2) 37(1994), 125-132. MR 95d:47043
  • [HW] C. B. Huijsmans and A. W. Wickstead, The inverse of band preserving and disjointness preserving operators, Indag. Math. 3(1992), 179-183. MR 94g:47047
  • [J] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33(1990), 139-144. MR 92j:46049
  • [K] A. V. Koldunov, Hammerstein operators preserving disjointness, Proc. Amer. Math. Soc. 123(1995), 1083-1095. MR 95e:47053
  • [M] M. Meyer, Quelques propriétés des homomorphismes d'espaces vectoriels réticulés, Equipe d'Analyse Paris VI, Preprint 131, 1979.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47B60

Retrieve articles in all journals with MSC (1991): 47B60


Additional Information

Yuri A. Abramovich
Affiliation: Department of Mathematics, Indiana University/Purdue University–Indianapolis, 402 Blackford Street, Indianapolis, Indiana 46202
Email: yabramovich@math.iupui.edu

Arkady K. Kitover
Affiliation: Department of Mathematics, Community College of Philadelphia, Philadelphia, Pennsylvania 19130
Email: akitover@ccp.cc.pa.us

DOI: https://doi.org/10.1090/S0002-9939-98-04318-4
Keywords: Vector lattice, normed lattice, disjointness preserving operators, band preserving operators, invertible operators
Received by editor(s): November 7, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society