Continuity of K-theory:

An example in equal characteristics

Author:
Bjørn Ian Dundas

Journal:
Proc. Amer. Math. Soc. **126** (1998), 1287-1291

MSC (1991):
Primary 11S70; Secondary 13J05, 19D45, 19D50

DOI:
https://doi.org/10.1090/S0002-9939-98-04382-2

MathSciNet review:
1452802

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a perfect field of characteristic , we show that the Quillen K-groups are uniquely -divisible for . In fact, the Milnor K-groups are uniquely -divisible for all . This implies that is -connected after profinite completion for a complete discrete valuation ring with perfect residue field.

**[B]**A. K. Bousfield,*The localization of spectra with respect to homology*, Topology**18**(1979), 257-281. MR**80m:55006****[BK]**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations, Springer Lecture Notes in Math.*, vol. 304, 1972. MR**51:1825****[BM]**M. Bökstedt and I. Madsen,*Algebraic K-theory of local number fields: the unramified case*, Ann. of Math. Stud. Princeton University Press**138**(1995), 28-57. MR**97e:19004****[DS]**R. K. Dennis and M. R. Stein,*of discrete valuation rings*, Adv. in Math.**18**(1975), 182-238. MR**55:10544****[D]**B. I. Dundas,*A model for the K-theory of complete extensions*, In preparation.**[Ga]**O. Gabber,*K-theory of Henselian local rings and Henselian pairs*, Contemp. Math.**126**(1992), 59-70. MR**93c:19005****[Ge]**S. M. Gersten,*Some exact sequences in the higher K-theory of rings*, Springer Lecture Notes in Math.**341**(1972), 211-243. MR**50:7138****[He]**L. Hesselholt,*Topological cyclic homology and local function fields*, Aarhus Universitet, Preprint series (31) (December 1993).**[Hi]**H. L. Hiller,*-rings and algebraic K-theory*, J. Pure Appl. Alg.**20**(1981), 241-266. MR**82e:18016****[I]**O. Izhboldin,*On -torsion in for fields of characteristic*, Adv. Soviet Math.**4**, 129-144. MR**92f:11165****[K]**C. Kratzer,*-structure en K-théorie algébrique*, Comment. Math. Helv**55**(1980), 233-254. MR**81m:18011****[Mc]**R. McCarthy,*Relative algebraic K-theory and topological cyclic homology*, To appear in Acta Math.**[MS]**A. S. Merkur'ev and A. A. Suslin,*The group for a field*, Math. USSR Izv.**36**(1991), 541-565. MR**91g:19002****[M]**J. Milnor,*Introduction to algebraic K-theory*, Ann. of Math. Stud., vol. 72, Princeton University Press, 1971. MR**50:2304****[P]**I. A. Panin,*On a theorem of Hurewicz and K-theory of complete discrete valuation rings*, Math. USSR Izv.**29**(1987), 81-99. MR**88a:18021****[Se]**J. P. Serre,*Corps locaux*, Actualités scientifiques et industrielles. 1296. Publications de l'Institut de Mathématique de l'Université de Nacango VIII, Hermann, Paris 1968. MR**50:7096****[Su]**A. A. Suslin,*Algebraic K-theory of fields*, Proc. Int. Congr. Math., Berkeley/Calif. 1986**1**(1987), 222-244. MR**89k:12010****[W]**J. B. Wagoner,*Delooping the continuous K-theory of a valuation ring*, Pacific J. Math.**65**(1976), 533-538. MR**56:3093**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
11S70,
13J05,
19D45,
19D50

Retrieve articles in all journals with MSC (1991): 11S70, 13J05, 19D45, 19D50

Additional Information

**Bjørn Ian Dundas**

Affiliation:
Department of Mathematical Sciences, Section Gløshaugen, The Norwegian University of Science and Technology, N-7034 Trondheim, Norway

Email:
dundas@math.ntnu.no

DOI:
https://doi.org/10.1090/S0002-9939-98-04382-2

Keywords:
Continuity of K-theory,
complete discrete valuation ring,
ring of formal power series,
Milnor K-theory

Received by editor(s):
October 17, 1996

Additional Notes:
The author was supported by the Danish research academy.

Communicated by:
Thomas Goodwillie

Article copyright:
© Copyright 1998
American Mathematical Society