Global asymptotic behavior of solutions

of a semilinear parabolic equation

Authors:
Qi S. Zhang and Z. Zhao

Journal:
Proc. Amer. Math. Soc. **126** (1998), 1491-1500

MSC (1991):
Primary 35K57

MathSciNet review:
1458274

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the large time behavior of solutions for the semilinear parabolic equation . Under a general and natural condition on and the initial value , we show that global positive solutions of the parabolic equation converge pointwise to positive solutions of the corresponding elliptic equation. As a corollary of this, we recapture the global existence results on semilinear elliptic equations obtained by Kenig and Ni and by F.H. Lin and Z. Zhao. Our method depends on newly found global bounds for fundamental solutions of certain linear parabolic equations.

**[A]**D. G. Aronson,*Non-negative solutions of linear parabolic equations*, Ann. Scuola Norm. Sup. Pisa (3)**22**(1968), 607–694. MR**0435594****[AS]**M. Aizenman and B. Simon,*Brownian motion and Harnack inequality for Schrödinger operators*, Comm. Pure Appl. Math.**35**(1982), no. 2, 209–273. MR**644024**, 10.1002/cpa.3160350206**[CFG]**F. Chiarenza, E. Fabes, and N. Garofalo,*Harnack’s inequality for Schrödinger operators and the continuity of solutions*, Proc. Amer. Math. Soc.**98**(1986), no. 3, 415–425. MR**857933**, 10.1090/S0002-9939-1986-0857933-4**[F]**Hiroshi Fujita,*On the blowing up of solutions of the Cauchy problem for 𝑢_{𝑡}=Δ𝑢+𝑢^{1+𝛼}*, J. Fac. Sci. Univ. Tokyo Sect. I**13**(1966), 109–124 (1966). MR**0214914****[KN]**Carlos E. Kenig and Wei-Ming Ni,*An exterior Dirichlet problem with applications to some nonlinear equations arising in geometry*, Amer. J. Math.**106**(1984), no. 3, 689–702. MR**745147**, 10.2307/2374291**[L]**Fang-Hua Lin,*On the elliptic equation 𝐷ᵢ[𝑎ᵢⱼ(𝑥)𝐷ⱼ𝑈]-𝑘(𝑥)𝑈+𝐾(𝑥)𝑈^{𝑝}=0*, Proc. Amer. Math. Soc.**95**(1985), no. 2, 219–226. MR**801327**, 10.1090/S0002-9939-1985-0801327-3**[N]**Wei Ming Ni,*On the elliptic equation Δ𝑢+𝐾(𝑥)𝑢^{(𝑛+2)/(𝑛-2)}=0, its generalizations, and applications in geometry*, Indiana Univ. Math. J.**31**(1982), no. 4, 493–529. MR**662915**, 10.1512/iumj.1982.31.31040**[Zhang1]**Qi Zhang,*On a parabolic equation with a singular lower order term*, Trans. Amer. Math. Soc.**348**(1996), no. 7, 2811–2844. MR**1360232**, 10.1090/S0002-9947-96-01675-3**[Zhang2]**Qi Zhang,*Global existence and local continuity of solutions for semilinear parabolic equations*, Comm. PDE, to appear 1997.**[Zhang3]**Qi Zhang,*Linear parabolic equations with singular lower order coefficients*, PhD Thesis, Purdue U. 1996.**[Zhao1]**Z. Zhao,*On the existence of positive solutions of nonlinear elliptic equations—a probabilistic potential theory approach*, Duke Math. J.**69**(1993), no. 2, 247–258. MR**1203227**, 10.1215/S0012-7094-93-06913-X**[Zhao2]**Z. Zhao,*Subcriticality, positivity and gaugeability of the Schrödinger operator*, Bull. Amer. Math. Soc. (N.S.)**23**(1990), no. 2, 513–517. MR**1043084**, 10.1090/S0273-0979-1990-15965-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
35K57

Retrieve articles in all journals with MSC (1991): 35K57

Additional Information

**Qi S. Zhang**

Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Email:
sz@math.missouri.edu

**Z. Zhao**

Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Email:
zzhao@math.missouri.edu

DOI:
https://doi.org/10.1090/S0002-9939-98-04525-0

Received by editor(s):
November 6, 1996

Communicated by:
Jeffrey B. Rauch

Article copyright:
© Copyright 1998
American Mathematical Society