Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The entropy of rational Powers shifts


Author: Geoffrey L. Price
Journal: Proc. Amer. Math. Soc. 126 (1998), 1715-1720
MSC (1991): Primary 46L55, 46L40, 46L10
DOI: https://doi.org/10.1090/S0002-9939-98-04304-4
MathSciNet review: 1443405
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Connes-Størmer entropy of all rational Powers shifts is shown to be $\frac 12\log 2$.


References [Enhancements On Off] (What's this?)

  • [C] M. Choda, Entropy for $^*$-endomorphisms and relative entropy for subalgebras, J. Operator Theory 25 (1991), 125-140. MR 94a:46098
  • [CNT] A. Connes, H. Narnhofer and W. Thirring, Dynamical entropy of $C^*$-algebras and von Neumann algebras, Commun. Math. Phys. 112 (1987), 691-719. MR 89b:46078
  • [CS] A. Connes and E. Størmer, Entropy for automorphisms of $\mathrm{II}_1$ von Neumann algebras, Acta Math. 134 (1975), 289-306. MR 56:12906
  • [GS] V. Golodets and E. Størmer, Entropy of $C^*$-dynamical systems defined by bitstreams, Univ. of Oslo preprint, 1996.
  • [NST] H. Narnhofer, E. Størmer and W. Thirring, A $C^*$- dynamical system for which the tensor product formula for entropy fails, Ergodic Theory and Dynamical Systems 15 (1995), 961-968. CMP 96:03
  • [NT] H. Narnhofer and W. Thirring, Chaotic properties of the non-commutative 2-shift, From Phase Transitions to Chaos, World Science Publishing, 1992, pp. 530-546. MR 93i:46119
  • [Po] R. T. Powers, An index theory for semigroups of $\mathfrak{B}(\mathfrak{H})$ and type $\mathrm{II}_1$ factors, Canad. J. Math. 40 (1988), 86-114. MR 89f:46116
  • [PP1] R. T. Powers and G. Price, Binary shifts on the hyperfinite $\mathrm{II}_1$ factor, American Mathematical Society Series in Contemporary Mathematics 145 (1993), 453-464. MR 94h:46098
  • [PP2] R. T. Powers and G. Price, Cocycle conjugacy classes of shifts on the hyperfinite $\mathrm{II}_1$ factor, J. Funct. Anal. 121 (1994), 275-295. MR 95g:46110
  • [P1] G. Price, Shifts on the hyperfinite $\mathrm{II}_1$ factor, USNA preprint.
  • [P2] G. Price, Cocycle conjugacy classes of shifts on the hyperfinite $\mathrm{II}_1$ factor, J. Oper. Theory, to appear.
  • [P3] G. Price, Shifts on type $\mathrm{II}_1$ factors, Canad. J. Math. 39 (1987), 492-511. MR 88i:46080

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46L55, 46L40, 46L10

Retrieve articles in all journals with MSC (1991): 46L55, 46L40, 46L10


Additional Information

Geoffrey L. Price
Affiliation: Department of Mathematics 9E, United States Naval Academy, Annapolis, Maryland 21012
Email: glp@sma.usna.navy.mil

DOI: https://doi.org/10.1090/S0002-9939-98-04304-4
Keywords: Entropy, automorphisms, endomorphisms, factor, von Neumann algebras, noncommutative dynamical systems
Received by editor(s): November 19, 1996
Additional Notes: The author was supported in part by a grant from the National Security Agency and by a United States Naval Academy Recognition Grant
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society