Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the multiple points of immersions
in Euclidean spaces


Author: András Szucs
Journal: Proc. Amer. Math. Soc. 126 (1998), 1873-1882
MSC (1991): Primary 57R42
DOI: https://doi.org/10.1090/S0002-9939-98-04361-5
MathSciNet review: 1451830
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a self-transverse immersion of a closed, oriented manifold in a euclidean space and a natural number $i$ we compute the oriented cobordism class of the manifold of $i$-tuple points.


References [Enhancements On Off] (What's this?)

  • 1. Akhmetiev, P. - Rimányi, R. - Sz\H{u}cs, A. A generalization of Banchoff's theorem, To appear in Proc. Amer. Math. Soc.
  • 2. Atiyah, M. - Hirzebruch, F. Cohomologie - Operationen und characteristische Klassen, Math. Zeitschrift., 77 (1961), 149 - 187. MR 27:6285
  • 3. Banchoff, T. Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974) 407 - 413. MR 51:14066
  • 4. Eccles, P.J. Multiple points of codimension one immersions of oriented manifolds, Math. Proc. Cambridge Phil. Soc. 87 (1980) 213 - 220. MR 81j:55014
  • 5. Eccles, P.J. Codimension one immersions and the Kervaire invariant one problem, Math. Proc. Cambridge Philos. Soc. 90 (1981) 483 - 493. MR 83c:57015
  • 6. Eccles, P. J. Double point manifolds of immersions of spheres in Euclidean space, in Prospects of Topology (editor: Frank Quinn) Annals of Math. Studues, 138 (1995) 125 - 137. MR 96m:57044
  • 7. Lannes, J. Sur les immersions de Boy, In Algebraic Topology, AArhus 1982, Lecture Notes in Math. vol. 1051 (Springer - Verlag, 1984) pp. 263 - 270. MR 86d:57015
  • 8. Lashof, R. and Smale, S. Self intersections of immersed manifolds, Journal of Math. and Mech. 8 (1959), 143 - 157. MR 21:332
  • 9. Herbert, R. J. Multiple points of immersed manifolds, Memoirs AMS Nov. 1981, vol.34. No. 250. MR 84c:57022
  • 10. Hirzebruch, F. Topological methods in Algebraic Geometry, Springer-Verlag New York 1966. MR 34:2573
  • 11. Milnor, J.W. and Stasheff J.D. Characteristic classes, Ann. of Math. Studies 76, Princeton (1974). MR 55:13428
  • 12. Stong, R. Manifolds which immerse in small codimension, Illinois Journ. of Math. vol 27, Number 2, Summer 1983. MR 85b:57037
  • 13. Ronga, F. On multiple points of smooth immersions, Comment. Math. Helv. 55 (1980) (521-527). MR 82d:57018
  • 14. Sz\H{u}cs, A. Double point surfaces of smooth immersions $M^{n} \to R^{2n-2}$, Math. Proc. Camb. Phil. Soc. (1993), 113, 601 - 613. MR 94e:57047
  • 15. Sz\H{u}cs, A. Cobordism of maps with simplest singularities, Topology Symposium , Siegen 1979. Lecture Notes in Math. vol 788. (Springer-Verlag 1980), 223-244. MR 82b:57025
  • 16. Sz\H{u}cs, A. Cobordism groups of immersions of oriented manifolds, Acta Math. Hungarica 64 (2) (1994) 191-230. MR 95e:57050
  • 17. Wells, R. Double covers and metastable immersions of spheres, Canad. Journ. of Math. 26 (1974) 145 - 176. MR 49:3981

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 57R42

Retrieve articles in all journals with MSC (1991): 57R42


Additional Information

András Szucs
Affiliation: Department of Analysis, ELTE, Muzeum krt. 6-8, Budapest, 1088 Hungary
Email: szucsandras@ludens.elte.hu

DOI: https://doi.org/10.1090/S0002-9939-98-04361-5
Received by editor(s): November 19, 1996
Communicated by: Thomas Goodwillie
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society