There is a paracompact Q-set space in ZFC

Author:
Zoltan T. Balogh

Journal:
Proc. Amer. Math. Soc. **126** (1998), 1827-1833

MSC (1991):
Primary 54Dxx

MathSciNet review:
1459106

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a paracompact space such that every subset of is an -set, yet is not -discrete. We will construct our space not to have a -diagonal, which answers questions of A.V. Arhangel'skii and D. Shakhmatov on cleavable spaces.

**[A1]**A. V. Arhangel′skiĭ,*The general concept of cleavability of a topological space*, Proceedings of the Symposium on General Topology and Applications (Oxford, 1989), 1992, pp. 27–36. MR**1173240**, 10.1016/0166-8641(92)90076-C**[A2]**A. V. Arhangel′skii,*Divisibility and cleavability of spaces*, Recent developments of general topology and its applications (Berlin, 1992), Math. Res., vol. 67, Akademie-Verlag, Berlin, 1992, pp. 13–26. MR**1219762****[AS]**A. V. Arkhangel′skiĭ and D. B. Shakhmatov,*Pointwise approximation of arbitrary functions by countable families of continuous functions*, Trudy Sem. Petrovsk.**13**(1988), 206–227, 259 (Russian, with English summary); English transl., J. Soviet Math.**50**(1990), no. 2, 1497–1512. MR**961436**, 10.1007/BF01388512**[B]**Zoltán T. Balogh,*There is a 𝑄-set space in ZFC*, Proc. Amer. Math. Soc.**113**(1991), no. 2, 557–561. MR**1077786**, 10.1090/S0002-9939-1991-1077786-3**[BJ]**Zoltán Balogh and Heikki Junnila,*Totally analytic spaces under 𝑉=𝐿*, Proc. Amer. Math. Soc.**87**(1983), no. 3, 519–527. MR**684650**, 10.1090/S0002-9939-1983-0684650-3**[C]**Peter de Caux,*A nondegenerate 𝜎-discrete Moore space which is connected*, Colloq. Math.**41**(1979), no. 2, 207–209. MR**591925****[H]**R. W. Hansell,*Some consequences of (𝑉=𝐿) in the theory of analytic sets*, Proc. Amer. Math. Soc.**80**(1980), no. 2, 311–319. MR**577766**, 10.1090/S0002-9939-1980-0577766-0**[J]**Heikki J. K. Junnila,*Some topological consequences of the product measure extension axiom*, Fund. Math.**115**(1983), no. 1, 1–8. MR**690665****[KV]**Kenneth Kunen and Jerry E. Vaughan (eds.),*Handbook of set-theoretic topology*, North-Holland Publishing Co., Amsterdam, 1984. MR**776619****[R]**G. M. Reed,*On normality and countable paracompactness*, Fund. Math.**110**(1980), no. 2, 145–152. MR**600588**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
54Dxx

Retrieve articles in all journals with MSC (1991): 54Dxx

Additional Information

**Zoltan T. Balogh**

Affiliation:
Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45058

Email:
ZTBalogh@miavx1.muohio.edu

DOI:
https://doi.org/10.1090/S0002-9939-98-04426-8

Keywords:
Paracompact,
Q-set space,
$G_{\delta }$-diagonal,
cleavable

Received by editor(s):
August 24, 1995

Additional Notes:
Research supported by NSF Grant DMS-9108476.

Communicated by:
Franklin D. Tall

Article copyright:
© Copyright 1998
American Mathematical Society