Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Laplacians and Sobolev Gradients

Author: J. W. Neuberger
Journal: Proc. Amer. Math. Soc. 126 (1998), 2053-2060
MSC (1991): Primary 35A15; Secondary 47F05
MathSciNet review: 1443847
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a class of operators which fit the description of laplacians and which may be used to unify the construction of various Sobolev gradients.

References [Enhancements On Off] (What's this?)

  • 1. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • 2. A. Beurling and J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 208–215. MR 0106365
  • 3. Arne Beurling, The collected works of Arne Beurling. Vol. 2, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1989. Harmonic analysis; Edited by L. Carleson, P. Malliavin, J. Neuberger and J. Wermer. MR 1057614
  • 4. Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
  • 5. P. D. Lax and A. N. Milgram, Parabolic equations, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N. J., 1954, pp. 167–190. MR 0067317
  • 6. J. W. Neuberger, Sobolev Gradients and Differential Equations, Lecture Notes in Mathematics #1670, Springer, 1997.
  • 7. Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
  • 8. John von Neumann, Functional Operators. II. The Geometry of Orthogonal Spaces, Annals of Mathematics Studies, no. 22, Princeton University Press, Princeton, N. J., 1950. MR 0034514
  • 9. Hermann Weyl, The method of orthogonal projection in potential theory, Duke Math. J. 7 (1940), 411–444. MR 0003331

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35A15, 47F05

Retrieve articles in all journals with MSC (1991): 35A15, 47F05

Additional Information

J. W. Neuberger
Affiliation: Department of Mathematics, University of North Texas, Denton, Texas 76203

Keywords: Laplacian, Sobolev gradient
Received by editor(s): March 15, 1996
Received by editor(s) in revised form: December 18, 1996
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 1998 American Mathematical Society