Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hankel operators
on the Bergman space of the unit ball


Author: Maria Nowak
Journal: Proc. Amer. Math. Soc. 126 (1998), 2005-2012
MSC (1991): Primary 30H05, 47B38
DOI: https://doi.org/10.1090/S0002-9939-98-04252-X
MathSciNet review: 1443848
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the bounded holomorphic functions $\ f, g\ $ in the unit ball of $\ \mathbb{C}^{n}\ $ for which the operator $\ H^{*}_{\bar g}\ \!H_{\bar f}\ $ is compact. For $\ n=1\ $ the result was obtained by Axler and Gorkin in 1988 and by Zheng in 1989.


References [Enhancements On Off] (What's this?)

  • [1] P.Ahern, M.Flores, and W.Rudin, An Invariant Volume-Mean-Value Property, J. Funct. Anal. 111 (1993), 380-397. MR 94b:31002
  • [2] P.Ahern and W.Rudin, $\mathcal{M}$-harmonic product, Indag. Mathem., N.S., 2 (2) (1991), 141-147. MR 92g:32013
  • [3] J. Arazy, S.Fisher and J Peetre, Hankel operators on weighted Bergman spaces, Amer.J. Math. 110 (1988), 989-1054. MR 90a:47067
  • [4] S.Axler, The Bergman space , Bloch space,and the commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. MR 87m:47064
  • [5] S.Axler, Bergman spaces and their operators, Surveys of some recent results on operator theory, Pitman research notes in mathematics series, No 171 (1988), 1-50. MR 90b:47048
  • [6] S.Axler and P.Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), 711-723. MR 90a:46133
  • [7] D.Békollé, C.A. Berger, L.A.Coburn, and Kehe Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350. MR 91j:32034
  • [8] Huiping Li and D.H. Luecking, BMO on strongly pseudoconvex domains: Hankel operators, Duality and $\ \bar \partial $- estimates, Trans. Amer. Math. Soc. 346(2) (1994). MR 95b:47027
  • [9] M.Jevti\'{c} and M.Pavlovi\'{c}, On $\ \mathcal{M}$- harmonic Bloch space, Proc. Amer. Math.Soc. 123 (5) (1995), 1385- 1392. MR 95i:32009
  • [11] Z.J.Lou, Characterizations of Bloch functions on the unit ball of $\ \mathbb{C}^{n}\ $, Kodai Math. J. 16 (1993), 74-78. MR 94b:32007
  • [10] W.Rudin, Function Theory in the Unit Ball of $\ \mathbb{C}^{n}\ $, Springer-Verlag, 1980. MR 82i:32002
  • [12] R.M. Timoney, Bloch functions in several complex variables, Bull. London Math. Soc. 12 (1980), 241-267. MR 83b:32004
  • [13] R.M. Timoney, Bloch functions in several complex variables, II, J.Reine Angew. Math. 319 (1980), 1-22. MR 83b:32005
  • [14] D.Zheng, Hankel operators and Toeplitz operators on the Bergman Space, J. Funct. Anal. 83 (1989), 89-120. MR 91b:47057

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30H05, 47B38

Retrieve articles in all journals with MSC (1991): 30H05, 47B38


Additional Information

Maria Nowak
Affiliation: Instytut Matematyki UMCS , pl. Marii Curie-Skłodowskiej 1,20-031 Lublin, Poland
Email: nowakm@golem.umcs.lublin.pl

DOI: https://doi.org/10.1090/S0002-9939-98-04252-X
Received by editor(s): December 6, 1995
Received by editor(s) in revised form: December 10, 1996
Additional Notes: This work was supported in part by KBN grant No. 2 PO3A- 002-08.
Communicated by: Theodore W. Gamelin
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society