Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Ordinary differential inequalities
and quasimonotonicity
in ordered topological vector spaces


Author: Roland Uhl
Journal: Proc. Amer. Math. Soc. 126 (1998), 1999-2003
MSC (1991): Primary 34G20, 34A40, 47H07
DOI: https://doi.org/10.1090/S0002-9939-98-04311-1
MathSciNet review: 1443412
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A well known comparison theorem on ordinary differential inequalities with quasimonotone right-hand side $f(t,x)$ was carried over by
Volkmann (1972) to (pre)ordered topological vector spaces. We prove that the quasimonotonicity of $f$ is a necessary condition here if $f$ is continuous. Then it is shown that quasimonotonicity can be verified by considering only a few positive continuous linear functionals in the definition (for instance in $\ell _{\infty}$ by taking coordinate functionals).


References [Enhancements On Off] (What's this?)

  • 1. E. Kamke, Zur Theorie der Systeme gewöhnlicher Differentialgleichungen II, Acta Math. 58 (1932), 57-85.
  • 2. R. Lemmert, Existenzsätze für gewöhnliche Differentialgleichungen in geordneten Banachräumen, Funkcial. Ekvac. 32 (1989), 243-249. MR 90i:34096
  • 3. M. Müller, Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen, Math. Z. 26 (1927), 619-645.
  • 4. S. Schmidt, Fixed points for discontinuous quasimonotone maps in sequence spaces, Proc. Amer. Math. Soc. 115 (1992), 361-363. MR 93c:47072
  • 5. A. Simon and P. Volkmann, Remark on quasimonotonicity, World Sci. Ser. Appl. Anal. 3 (1994), 543-548. MR 95h:34024
  • 6. A. Simon and P. Volkmann, Parabolic inequalities in ordered topological vector spaces, Nonlinear Analysis 25 (1995), 1051-1054. MR 96i:35142
  • 7. R. Uhl, An extension of Max Müller's theorem to differential equations in ordered Banach spaces, Funkcial. Ekvac. 39 (1996), 203-216. CMP 97:04
  • 8. P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164. MR 46:7661
  • 9. P. Volkmann, Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201-210. MR 48:667
  • 10. P. Volkmann, Cinq cours sur les équations différentielles dans les espaces de Banach, A. Granas and M. Frigon (eds.), Topological methods in differential equations and inclusions, Kluwer, Dordrecht, 1995, 501-520. MR 96k:34138
  • 11. W. Walter, Gewöhnliche Differential-Ungleichungen im Banachraum, Arch. Math. 20 (1969), 36-47. MR 39:5908
  • 12. W. Walter, Differential and integral inequalities, Springer, Berlin, 1970. German edition 1964. MR 42:6391

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34G20, 34A40, 47H07

Retrieve articles in all journals with MSC (1991): 34G20, 34A40, 47H07


Additional Information

Roland Uhl
Affiliation: Mathematisches Institut II, Universität Karlsruhe, D-76128 Karlsruhe, Germany
Email: roland.uhl@math.uni-karlsruhe.de

DOI: https://doi.org/10.1090/S0002-9939-98-04311-1
Keywords: Quasimonotonicity, ordinary differential inequalities, comparison or monotonicity theorems, lower and upper solutions, ordered topological vector spaces
Received by editor(s): December 10, 1996
Communicated by: Hal L. Smith
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society