SOME RESULTS ON FINITE DRINFELD MODULES

CHIH-NUNG HSU

(Communicated by William W. Adams)

Abstract. Let K be a global function field, \(\infty \) a degree one prime divisor of K and let A be the Dedekind domain of functions in K regular outside \(\infty \). Let H be the Hilbert class field of A, B the integral closure of A in H. Let \(\psi \) be a rank one normalized Drinfeld A-module and let \(P \) be a prime ideal in B. We explicitly determine the finite A-module structure of \(\psi(B/P) \). In particular, if K = \(\mathbb{F}_q(t) \), \(q \) is an odd prime number and \(\psi \) is the Carlitz \(\mathbb{F}_q[t] \)-module, then the finite \(\mathbb{F}_q[t] \)-module \(\psi(\mathbb{F}_q[t]/P) \) is always cyclic.

1. Introduction

Recall that \(\mathbb{G}_m(\mathbb{Z}/p^n\mathbb{Z}) = (\mathbb{Z}/p^n\mathbb{Z})^\times \) is always cyclic except for the case that \(p = 2 \) and \(n \geq 3 \); if \(n \geq 3 \), then \((\mathbb{Z}/2^n\mathbb{Z})^\times \) is the direct product of two cyclic groups, one of order 2, the other of order \(2^{n-2} \). Let X be a smooth, projective, geometrically connected curve defined over the finite field \(\mathbb{F}_q \) with \(q \) elements and \(\infty \) be a rational point on X. We set K to be the function field of X over \(\mathbb{F}_q \) and A \(\subset \) K to be the Dedekind domain of functions regular outside \(\infty \). We will consider the Drinfeld A-modules. From the viewpoint of class field theory, these modules are interesting arithmetic objects over function fields. In particular, the rank one Drinfeld A-modules play a role entirely analogous to the important role played by \(\mathbb{G}_m \) over number fields. This naturally leads us to explore an analogous phenomenon for rank one Drinfeld A-modules.

Let \(K_\infty \) be the completion of K with respect to \(\infty \) and let \(C_\infty \) be the completion of the algebraic closure of \(K_\infty \) with respect to \(\infty \). Let \(C_\infty \{ \tau \} = \text{End}_{\mathbb{F}_q}(\mathbb{G}_a/C_\infty) \) be the twisted polynomial ring in the \(q \)th power Frobenius mapping \(\tau \). A rank one Drinfeld A-module \(\psi \) over \(C_\infty \) is an injective ring homomorphism \(\psi : A \rightarrow C_\infty \{ \tau \} \) such that the constant coefficient of \(\psi_a(\tau) \) is equal to \(a \) and \(\deg \psi_a(\tau) = -\text{Ord}_\infty a \) for all \(a \in A \). A sign-function (cf. [5] and [3]) \(\text{sgn} : K_\infty^\times \rightarrow \mathbb{F}_q^\times \) is a co-section of the inclusion map \(\mathbb{F}_q^\times \rightarrow K_\infty^\times \) such that \(\text{sgn}(\alpha) = 1 \) for all \(\alpha \in K_\infty^\times \) with \(\alpha - 1 \) vanishing at \(\infty \). A Drinfeld A-module \(\psi \) of rank one over \(C_\infty \) is said to be \(\text{sgn} \)-normalized if the leading coefficient of \(\psi_a(\tau) \) in \(\tau \) is equal to \(\text{sgn}(a) \) for all \(0 \neq a \in A \). It is known [5] that any Drinfeld A-module of rank one over \(C_\infty \) is isomorphic to a \(\text{sgn} \)-normalized A-module \(\psi \) over \(H \), where \(H \) is the Hilbert class field of \(A \), i.e., \(H \) is the maximal abelian extension of \(K \) such that the extension \(H/K \) completely splits over \(\infty \) and is unramified over every finite place of \(K \).
Let B be the integral closure of A in H and let ψ be a rank one sgn-normalized Drinfeld A-module. Let \mathfrak{M} be an ideal in B. Via the action of $\psi \pmod{\mathfrak{M}}$, B/\mathfrak{M} becomes a finite A-module. We denote this by $\psi(B/\mathfrak{M})$. This finite A-module plays the role of $\mathbb{C}(\mathbb{Z}/p\mathbb{Z})$. The purpose of this note is to determine the A-module structure of $\psi(B/\mathfrak{M})$. It is sufficient to consider the case $\psi(B/\mathfrak{P}^N)$, where \mathfrak{P} is a prime ideal in B. The structure of $\psi(B/\mathfrak{P}^N)$ is obtained in Theorems 2.1 and 2.2. In particular, if ψ is the Carlitz $\mathbb{F}_q[t]$-module ($[3]$, chapter 3) and $q \neq 2$, then $\psi(B/\mathfrak{P}^N)$ is always cyclic (cf. Corollaries 2.1 and 2.2). The Carlitz case is completely analogous to the classical case.

In section 3, we discuss the relations between $B_\mathfrak{P}$ and $\lim \psi(B/\mathfrak{P}^N)$ via the exponential and logarithm functions of the sgn-normalized Drinfeld module ψ.

2. The structure of $\psi(B/\mathfrak{P}^N)$

Let the notation $X, \mathbb{F}_q, \infty, K, A, H, B$ and sgn be as in the introduction. If M is a commutative \mathbb{F}_q-algebra, we let $M\{\tau\}$ denote the composition ring of Frobenius polynomials in τ, where τ is the q^th power mapping. From now on, we let ψ be a sgn-normalized rank one Drinfeld A-module over H, i.e., $\psi : A \rightarrow H\{\tau\}$ is a rank one Drinfeld A-module over H such that for any $a \in A$, the leading coefficient of $\psi_a(\tau)$ is equal to $\text{sgn}(a)$. It is known that $\psi_a(\tau) \in B\{\tau\}$ for all $a \in A$. Thus, via ψ, B becomes an A-module. We denote this module by $\psi(B)$ and denote the action $\psi_a(b)$ by b^a for all $a \in A, b \in B$. Let \mathfrak{M} be an ideal in B. Since $\psi(A) \subset B\{\tau\}$, it follows that, via $\psi \pmod{\mathfrak{M}}$, B/\mathfrak{M} becomes a finite A-module. We denote this finite module by $\psi(B/\mathfrak{M})$. If the decomposition of \mathfrak{M} is equal to $\mathfrak{P}_1^{N_1}\mathfrak{P}_2^{N_2}\cdots\mathfrak{P}_L^{N_L}$, where $\mathfrak{P}_1, \mathfrak{P}_2, \cdots, \mathfrak{P}_L$ are prime ideals in B, then, by the Chinese remainder theorem, we have

$$\psi(B/\mathfrak{M}) \cong \bigoplus_{i=1}^L \psi(B/\mathfrak{P}_i^{N_i}).$$

Thus to determine the A-module structure of $\psi(B/\mathfrak{M})$, it is sufficient to consider the case $\psi(B/\mathfrak{P}^N)$, where \mathfrak{P} is a prime ideal in B. Let $\wp = \mathfrak{P} \cap A$ and let f be the dimension of the vector space B/\wp over A/\wp. It follows from class field theory that $\text{Norm}_{A/\wp} = \wp^f$ is a principal ideal in A. We let $\wp^f = (\pi_\wp)$ for the unique element $\pi_\wp \in A$ with $\text{sgn}(\pi_\wp) = 1$. It is known that $\psi(B/\wp)$ is a cyclic A-module with Euler-Poincaré characteristic $\pi_\wp - 1$ (cf. [3], chapter 4), i.e., as A-module,

$$\psi(B/\wp) \cong A/(\pi_\wp - 1).$$

We let $\psi_\wp(\tau)$ be the monic generator of the left ideal of $H\{\tau\}$ generated by $\psi_a(\tau)$ for all $a \in \wp$. We also denote the polynomial $\psi_\wp(\tau)(x)$ in x by x^\wp for all $x \in H$. The important property of the polynomial $\psi_\wp(\tau)$, $\wp \subset A$ a prime ideal, is the following (cf. [5], Proposition 11.4):

$$f(x) = \psi_\wp(\tau)(x)/x = x^\wp/x$$

is an Eisenstein polynomial over B at any prime ideal \wp above \wp. Let $c_\wp = f(0) \in B$. Then we have $\deg_{\wp} c_\wp = 1$. If \wp is a rational point on the curve X (i.e., \wp is a prime ideal in A of degree one) defined over \mathbb{F}_2, then $\psi_\wp(\tau)(x) = \psi_\wp(\tau) = c_\wp x + 1 \in B\{\tau\}$, i.e., $x^\wp = \psi_\wp(\tau)(x) = c_\wp x + 1$, where $c_\wp \in \wp$ but $c_\wp \not\in \wp^2$.

Lemma 2.1. Suppose that N is a positive integer, \wp and \wp are as above. Then for any $b_1, b_2 \in \psi(B)$, if $b_1 \equiv b_2 \pmod{\wp^N}$, then $b_1^N \equiv b_2^N \pmod{\wp^{N+1}}$.

Proof. We may write $b_1 = b_2 + x$ for some $x \in \mathfrak{P}^N$. Then, by the Eisenstein polynomial property,

$$b_1^p = (b_2 + x)^p = b_2^p + x^p \equiv b_2^p \pmod{\mathfrak{P}^{N+1}}. \quad \square$$

Lemma 2.2. Suppose that \mathfrak{P}, φ and c_φ are as above. Then:

1. If $N \geq 2$ is a positive integer, then $x^{\varphi^{N-2}} \equiv x \cdot c_\varphi^{N-2} \pmod{\mathfrak{P}^N}$ for all $x \in \mathfrak{P}$ except for the case that φ is a rational point on the curve X defined over \mathbb{F}_2.
2. If φ is a rational point on the curve X defined over \mathbb{F}_2 (i.e., φ is a prime ideal of A of degree one) and $N \geq 3$ is a positive integer, then

$$x^{\varphi^{N-3}} \equiv x \cdot c_\varphi^{N-3} \pmod{\mathfrak{P}^N}$$

for all $x \in \mathfrak{P}^2$.
3. If φ is a rational point on the curve X defined over \mathbb{F}_2, then for all $x \in \mathfrak{P}$, $x \not\equiv 0, c_\varphi \pmod{\mathfrak{P}^2}$, we have $x^p \in \mathfrak{P}^2$ but $x^p \not\in \mathfrak{P}^3$.

Proof. Assertion (1) is obvious for $N = 2$. Now suppose that it is true for $N \geq 2$, i.e.,

$$x^{\varphi^{N-2}} \equiv x \cdot c_\varphi^{N-2} \pmod{\mathfrak{P}^N}.$$

We show that it is true for $N + 1$. Applying Lemma 2.1 and the Eisenstein polynomial property, we have

$$(x^{\varphi^{N-2}})^p \equiv (x \cdot c_\varphi^{N-2})^p \equiv c_\varphi \cdot (x \cdot c_\varphi^{N-2}) + (x \cdot c_\varphi^{N-2})^q^{\deg \varphi} \pmod{\mathfrak{P}^{N+1}}.$$

If $q \neq 2$ or $q = 2$ and φ is not a rational point on the curve X over \mathbb{F}_2 (i.e., $q^{\deg \varphi} \geq 3$), then we have $(x \cdot c_\varphi^{N-2})^q^{\deg \varphi} \in \mathfrak{P}^{N+1}$. Hence

$$x^{\varphi^{N+1}} \equiv x^{c_\varphi^{N-1}} \pmod{\mathfrak{P}^{N+1}}.$$

This completes the proof of (1). The proof of (2) is similar.

To prove (3), since $x \in \mathfrak{P}$ and $\deg_\mathfrak{P} c_\varphi = 1$, $x^p = c_\varphi \cdot x + x^2 = x(x + c_\varphi) \in \mathfrak{P}^2$. The assertion $x^p \not\in \mathfrak{P}^3$ follows from the facts that the characteristic of B is 2 and $x \not\equiv 0, c_\varphi \pmod{\mathfrak{P}^2}$. \quad \square

Lemma 2.3. Suppose that \mathfrak{P} and φ are as above. Then:

1. If $N \geq 2$ is a positive integer and $x \in \mathfrak{P}, x \not\in \mathfrak{P}^2$, then the submodule $\langle \overline{\varphi} \rangle$ of $\psi(B/\mathfrak{P}^N)$ generated by $\overline{x} = x \pmod{\mathfrak{P}^N} \in \psi(B/\mathfrak{P}^N)$ is isomorphic to A/φ^{N-1} except for the case when φ is a rational point on the curve X defined over \mathbb{F}_2.
2. Suppose that φ is a rational point on the curve X defined over \mathbb{F}_2. If $N \geq 3$ is a positive integer and $x \in \mathfrak{P}^2, x \not\in \mathfrak{P}^3$, then the submodule $\langle \overline{\varphi} \rangle$ of $\psi(B/\mathfrak{P}^N)$ generated by $\overline{x} = x \pmod{\mathfrak{P}^N} \in \psi(B/\mathfrak{P}^N)$ is isomorphic to A/φ^{N-2}.
3. Suppose that φ is a rational point on the curve X defined over \mathbb{F}_2 and $N \geq 2$. Then for all $x \in \mathfrak{P}, x \not\equiv 0, c_\varphi \pmod{\mathfrak{P}^2}$, the submodule $\langle \overline{\varphi} \rangle$ of $\psi(B/\mathfrak{P}^N)$ generated by $\overline{x} = x \pmod{\mathfrak{P}^N} \in \psi(B/\mathfrak{P}^N)$ is isomorphic to A/φ^{N-1}.

Proof. By Lemma 2.2 (1), $x^{\varphi^{N-1}} \equiv x \cdot c_\varphi^{N-1} \pmod{\mathfrak{P}^{N+1}}$. Since $\deg_\mathfrak{P} c_\varphi = 1$ and $x \in \mathfrak{P}$, we have

$$x^{\varphi^{N-1}} \equiv 0 \pmod{\mathfrak{P}^N}.$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Again by Lemma 2.2 (1), degₚ cₚ = 1 and \(x \in \mathfrak{P}, x \notin \mathfrak{P}^2 \),
\[x^{\wp^{N-2}} \equiv x \cdot c_{\wp}^{N-2} \neq 0 \pmod{\mathfrak{P}^N}. \]
Since \(\langle \wp \rangle \) is a cyclic \(A \)-module, \(\langle \wp \rangle \) is isomorphic to \(A/\wp^{N-1} \). The proof of (2) is similar, and the proof of (3) follows from Lemma 2.2 (3), (2). □

Let \([H : K] = fr \) be the class number of \(A \), where \(f = [B/\mathfrak{P} : A/\wp] \). Then the main result is

Theorem 2.1. Suppose that \(\mathfrak{P}, \wp, \wp \) and \(f \) are as above. Then
\[\psi(B/\mathfrak{P}^N) \cong \begin{cases} A/(\wp^{N-1}) & \text{if } N = 1, \\ A/(\wp^{N-1}) \oplus (A/\wp^{N-1})^f & \text{if } N > 1, \end{cases} \]
extcept for the case when \(\wp \) is a rational point on the curve \(X \) defined over \(\mathbb{F}_2 \).

Proof. The case \(N = 1 \) follows from the theory of Drinfeld modules over finite fields (cf. [3], Chapter 4). We suppose that \(N \geq 2 \). Given \(x \in \psi(B) \). Since \(\psi(B/\mathfrak{P}) \cong A/(\wp^{N-1}) \), it follows that \(x^{\wp^{N-1}} \equiv 0 \pmod{\mathfrak{P}} \). By Lemma 2.2 (1), we have
\[(x^{\wp^{N-1}})^{\wp^{N-1}} \equiv 0 \pmod{\mathfrak{P}^N}. \]
This implies that the Euler-Poincaré characteristic of any \(A \)-cyclic submodule of \(\psi(B/\mathfrak{P}^N) \) divides \((\wp^{N-1})^f \).
Since \(\psi(A) \subset B\{x\} \), \(\psi(\mathfrak{P}/\mathfrak{P}^N) \) is a submodule of \(\psi(B/\mathfrak{P}^N) \). We have
\[\dim_{\mathbb{F}_2} \psi(\mathfrak{P}/\mathfrak{P}^N) = (N - 1) \dim_{\mathbb{F}_2} B/\mathfrak{P} = f(N - 1) \dim_{\mathbb{F}_2} A/\wp. \]
Since \(x^{\wp^{N-1}} \equiv 0 \pmod{\mathfrak{P}^N} \) for all \(x \in \mathfrak{P} \) (by Lemma 2.2 (1)), as \(A \)-module
\[\psi(\mathfrak{P}/\mathfrak{P}^N) \cong \bigoplus_{i=1}^l A/\wp^{n_i} \]
for suitable positive integers \(1 \leq n_1 \leq n_2 \leq \cdots \leq n_l \leq N - 1 \) such that
\[n_1 + n_2 + \cdots + n_l = (N - 1)f. \]
By Lemma 2.2 (1) and Lemma 2.3 (1), the subset of elements \(\bar{x} \) in \(\psi(\mathfrak{P}/\mathfrak{P}^N) \) such that \(x^{\wp^{N-1}} \equiv 0 \pmod{\mathfrak{P}^N} \) is equal to \(\psi(\mathfrak{P}^2/\mathfrak{P}^N) \). Counting cardinalities, we must have
\[l = f, \quad n_1 = n_2 = \cdots = n_f = N - 1. \]
Thus we get
\[\psi(\mathfrak{P}/\mathfrak{P}^N) \cong (A/\wp^{N-1})^f. \]

Next, we take \(g \in B \) such that \(g \pmod{\mathfrak{P}} \) is a generator of \(\psi(B/\mathfrak{P}) \). We let \(\langle \bar{g} \rangle \) be the \(A \)-submodule of \(\psi(B/\mathfrak{P}^N) \) generated by \(\bar{g} = g \pmod{\mathfrak{P}^N} \) in \(\psi(B/\mathfrak{P}^N) \). We define the \(A \)-module homomorphism \(\chi : \langle \bar{g} \rangle \rightarrow \psi(B/\mathfrak{P}) \) by \(\chi(x \pmod{\mathfrak{P}^N}) = x \pmod{\mathfrak{P}} \) for all \(x \pmod{\mathfrak{P}^N} \) in \(\langle \bar{g} \rangle \). Since \(g \pmod{\mathfrak{P}} \) is a generator of \(\psi(B/\mathfrak{P}) \) and \(\chi(g \pmod{\mathfrak{P}^N}) = g \pmod{\mathfrak{P}} \), \(\chi \) is a surjective homomorphism of \(\langle \bar{g} \rangle \) onto \(\psi(B/\mathfrak{P}) \). This implies that \((\wp^{N-1}) \) divides the Euler-Poincaré characteristic of \(\psi(B/\mathfrak{P}^N) \), because \(\langle \bar{g} \rangle \) is a submodule of \(\psi(B/\mathfrak{P}^N) \). Combining these, we obtain that \((\wp^{N-1})^f \) divides the Euler-Poincaré characteristic of \(\psi(B/\mathfrak{P}^N) \); this implies that the Euler-Poincaré characteristic of \(\psi(B/\mathfrak{P}^N) \) is equal to
(\pi_\varphi - 1)\psi^{f(N-1)}; hence \langle \psi \rangle (or \psi(\mathcal{B}/\mathcal{P}^N)) contains an A-submodule which is isomorphic to \(A/(\pi_\varphi - 1) \). Therefore, we obtain that
\[
\psi(\mathcal{B}/\mathcal{P}^N) \cong A/(\pi_\varphi - 1) \oplus (A/\varphi^{N-1})^f. \]

Theorem 2.2. Suppose that \(\varphi \) is a rational point on the curve \(X \) defined over \(\mathbb{F}_2 \). Then
\[
\psi(\mathcal{B}/\mathcal{P}^N) \cong \begin{cases}
A/(\pi_\varphi - 1), & \text{if } N = 1; \\
A/(\pi_\varphi - 1) \oplus (A/\varphi)^f, & \text{if } N = 2; \\
A/(\pi_\varphi - 1) \oplus A/\varphi \oplus (A/\varphi^{N-1})^f - 1 \oplus A/\varphi^{N-2}, & \text{if } N \geq 3.
\end{cases}
\]

Proof. The case \(N = 1 \) is standard. We suppose that \(N \geq 2 \). Using Lemmas 2.2 and 2.3, the proof is almost the same as the proof of Theorem 2.1. We obtain that the Euler-Poincaré characteristic of any A-cyclic submodule of \(\psi(\mathcal{B}/\mathcal{P}^N) \) divides \((\pi_\varphi - 1)\varphi^{N-1}\), the finite A-module \(\psi(\mathcal{B}/\mathcal{P}^N) \) is annihilated by \(\varphi^{N-1} \), and \(\psi(\mathcal{B}/\mathcal{P}^N) \) contains an A-submodule which is isomorphic to \(A/(\pi_\varphi - 1) \). From these, we deduce that the Euler-Poincaré characteristic of \(\psi(\mathcal{B}/\mathcal{P}^N) \) is equal to \((\pi_\varphi - 1)\psi^{f(N-1)}\) and
\[
\psi(\mathcal{B}/\mathcal{P}^N) \cong A/(\pi_\varphi - 1) \oplus \psi(\mathcal{P}/\mathcal{P}^N).
\]

Next, we deal with the A-module structure of \(\psi(\mathcal{P}/\mathcal{P}^N) \). For \(N = 2 \), since \(\psi(\mathcal{P}/\mathcal{P}^2) \) is annihilated by \(\varphi \), counting the dimension of \(\psi(\mathcal{P}/\mathcal{P}^2) \) over \(A/\varphi \), we obtain that \(\psi(\mathcal{P}/\mathcal{P}^2) \cong (A/\varphi)^f \). For \(N \geq 3 \), since \(\varphi \) is a rational point on the curve \(X \) defined over \(\mathbb{F}_2 \) and \([B/\mathcal{P}: A/\varphi] = f\), as abelian group \(\mathcal{P}/\mathcal{P}^2 \cong (A/\varphi)^f \cong \mathbb{F}_2^f \). Let \(S \) be the A-submodule of \(\psi(\mathcal{P}/\mathcal{P}^N) \) generated by elements \(x \pmod{\mathcal{P}^N} \) is such that \(x \in \mathcal{P} \) but \(x \not\in \mathcal{P}^2 \). We define the abelian group homomorphism \(\chi : S \to \psi(\mathcal{P}^2/\mathcal{P}^3) \) by \(\chi(x \pmod{\mathcal{P}^N}) = x^\varphi \pmod{\mathcal{P}^3} \) for all \(x \pmod{\mathcal{P}^N} \in S \). From Lemma 2.2 (3), we know that if \(x \pmod{\mathcal{P}^N} \in S \) is such that \(\chi(x \pmod{\mathcal{P}^N}) = 0 \), then \(x \equiv 0, c_{\varphi} \pmod{\mathcal{P}^2} \). This implies that \(\dim_{\mathbb{F}_2} \chi(S) = f - 1 \). Combining this with Lemma 2.3 (3) and the fact that \(S \) is annihilated by \(\varphi^{N-1} \), we obtain that
\[
S \cong A/\varphi \oplus (A/\varphi^{N-1})^{f-1}.
\]

Since \(\chi(c_{\varphi} \pmod{\mathcal{P}^N}) = 0 \) and \(c_{\varphi} \pmod{\mathcal{P}^N} \) \(\in S \), there exists an element \(x \in \mathcal{P}^2, x \not\in \mathcal{P}^3 \), such that \(x \pmod{\mathcal{P}^3} \not\in \chi(S) \). By Lemma 2.2 (2), we know that \(\langle x \pmod{\mathcal{P}^N} \rangle \) is a submodule of \(\psi(\mathcal{P}/\mathcal{P}^N) \) which is isomorphic to \(A/\varphi^{N-2} \). Combining these and counting the dimension of \(\psi(\mathcal{P}/\mathcal{P}^N) \) over \(A/\varphi \cong \mathbb{F}_2 \), we obtain that
\[
\psi(\mathcal{B}/\mathcal{P}^N) \cong A/(\pi_\varphi - 1) \oplus A/\varphi \oplus (A/\varphi^{N-1})^{f-1} \oplus A/\varphi^{N-2}.
\]

This completes the proof.

As an application, we let \(A = \mathbb{F}_q[t] \) and let \(\phi \) be the Carlitz A-module, i.e., \(\phi : A \to \mathbb{F}_2(t)\{\tau\} \) is given by
\[
\phi(t) = t\tau^0 + \tau^1.
\]

Then we have

Corollary 2.1. If \(N \) is a positive integer and \(\varphi = (p) \) is a prime ideal in \(A \) generated by the monic polynomial \(p \), then the finite A-module
\[
\psi(A/\mathcal{P}^N) \cong A/(p^N - p^{N-1})
\]
is cyclic except for the case when \(\mathbb{F}_q \) equals \(\mathbb{F}_2 \) and \(p \mid t(t + 1) \).
Corollary 2.2. If \(N \) is a positive integer, \(A = \mathbb{F}_2[t] \) with \(p = t \) or \(t + 1 \in A \), then the finite \(A \)-module \(\phi(A / \varphi^N) \) is isomorphic to
\[
\begin{cases}
 A / (p - 1), & \text{if } N = 1; \\
 A / (t^2 + t), & \text{if } N = 2; \\
 A / (t^2 + t) \oplus A / (p^{N-2}) & \text{if } N \geq 3.
\end{cases}
\]

3. Passage to the limit

Let the notation \(X, \mathbb{F}_q, \infty, K, A, H, f, \pi, sgn \) be as before. Let \(\psi \) be a \(sgn \)-normalized rank one Drinfeld \(A \)-module over \(H \). Suppose that \(P \) and \(\wp \) are as in section 2 and \(\wp \) does not correspond to a rational point on \(X \) if \(q = 2 \). It is well-know that there exists a lattice \(A_\zeta, \zeta \in C_\infty, \mathfrak{A} \) an ideal of \(A \), of rank one such that \(\psi \) is determined by this lattice. The exponential function \(e_\psi \) associated to \(A_\zeta \) is defined to be
\[
e_\psi(x) = z \prod_{a \in \mathfrak{A}} \left(1 - \frac{x}{a \cdot \zeta}\right) \in H[[\tau]].
\]

Let \(H_\wp \) (resp. \(K_\wp \)) be the completion fields associated to \(\wp \) (resp. \(\varphi \)). Let \(B_\wp \subset H_\wp \) and \(A_\wp \subset K_\wp \) be the rings of integers.

It follows from theorem 2.1 that as \(A \)-module
\[
\psi(B_\wp) = \psi(\lim_{\leftarrow} B / \wp^N) = \lim_{\leftarrow} \psi(B / \wp^N) = \lim_{\leftarrow} A / (\pi_\wp - 1) \oplus (A / \varphi^{N-1})^f \\
= A / (\pi_\wp - 1) \oplus A_\wp^f \\
= A / (\pi_\wp - 1) \oplus B_\wp.
\]

We know that the coefficients of \(e_\psi \) are in \(H \) and these coefficients are obtained by solving a recursion equation via any \(\psi_a, a \in A, a \not\in \mathbb{F}_q \) (cf. [3], Lemma 4.6.5). We can deduce from this recursion that \(e_\psi \) converges in a neighborhood of 0. Thus there exist element \(\alpha \in H_\wp \) such that \(e(x) = e_\psi(\alpha \cdot x) \) is an analytic injective function of \(B_\wp \) into \(B_\wp \). By the property of the exponential function \(e_\psi \), we obtain that \(e(ax) = \psi_a(e(x)) \) for all \(a \in A \). Combining these, we have

Theorem 3.1. As \(A \)-module,
\[
\psi(B_\wp) \cong \begin{cases}
 A / (\pi_\wp - 1) \oplus A / \varphi \oplus B_\wp, & \text{if } q = 2 \text{ and } \varphi \text{ is a rational point}; \\
 A / (\pi_\wp - 1) \oplus B_\wp, & \text{otherwise}.
\end{cases}
\]

Moreover, one has an analytic map \(e : B_{\wp} \to \psi(B_{\wp}) \) satisfying the following commutative diagram:
\[
\begin{array}{ccc}
B_{\wp} & \xrightarrow{e} & \psi(B_{\wp}) \\
\alpha \downarrow & & \downarrow \psi_a \\
B_{\wp} & \xrightarrow{e} & \psi(B_{\wp})
\end{array}
\]
References

Department of Mathematics, National Taiwan Normal University, 88 Sec. 4 Ting-Chou Road, Taipei, Taiwan
E-mail address: maco@math.ntnu.edu.tw