Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the cohomology
of regular differential forms
and dualizing sheaves


Authors: Reinhold Hübl and Xiaotao Sun
Journal: Proc. Amer. Math. Soc. 126 (1998), 1931-1940
MSC (1991): Primary 13N05, 14F10
DOI: https://doi.org/10.1090/S0002-9939-98-04499-2
MathSciNet review: 1458879
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $Y$ is a local Dedekind scheme and $X/Y$ is a projective Cohen-Macaulay variety of relative dimension $1$, then $R^{1} f_{*} \omega ^{1}_{X/Y}$ is torsionfree if and only if $X/Y$ is arithmetically Cohen-Macaulay for a suitable embedding in $\mathbb{P}^{n}_{k}$. If $X$ is regular then $R^{1} f_{*} \omega ^{1}_{X/Y}$ is torsionfree whenever the multiplicity of the special fibre is not a multiple of the characteristic of the residue class field.


References [Enhancements On Off] (What's this?)

  • 1. ARTIN, M. AND G. WINTERS: Degenerate fibres and stable reduction of curves. Topology 10 (1971), 373 - 383. MR 57:16313
  • 2. BLOCH, S.: De Rham cohomology and conductors of curves. Duke Math. Jour. 54 (1987), 295 - 308. MR 89h:11028
  • 3. HARTSHORNE, R.: Algebraic Geometry. Springer, Berlin, Heidelberg, New York (1977). MR 57:3116
  • 4. HÜBL R.: Graded duality and generalized fractions. preprint.
  • 5. HÜBL, R. AND E. KUNZ: Regular differential forms and duality for projective morphisms. Jour. reine angew. Math. 410 (1990), 84 - 108. MR 92a:14015
  • 6. HÜBL, R. AND X. SUN: Vector bundles on the projective line over a discrete valuation ring. In preparation.
  • 7. KUNZ, E.: Kähler differentials. Vieweg, Braunschweig, Wiesbaden (1986). MR 88e:14025
  • 8. KERSKEN, M.: Cousinkomplexe und Nennersysteme. Math. Z. 182 (1983), 389 - 402. MR 85h:32014
  • 9. KLEIMAN, S.: Relative duality for quasi-coherent sheaves. Comp. Math. 41 (1980), 39 - 60. MR 81m:14017
  • 10. KOLLAR, J.: Higher direct images of dualizing sheaves I. Annals of Math. 123 (1986), 11 - 42. MR 87c:14038
  • 11. KUNZ, E. AND R. WALDI: Regular differential forms. Contemporary Mathematics 79 (1988), Amer. Math. Soc., Providence. MR 90a:14021
  • 12. LIPMAN, J.: Dualizing sheaves, differentials and residues on algebraic varieties. Astérisque 117 (1984). MR 86g:14008
  • 13. MILNE, J.: Étale Cohomology. Princeton University Press, Princeton (1980). MR 81j:14002
  • 14. SUN, X.: Ramifications on arithmetic schemes. Jour. reine angew. Math. 488 (1997), 37-54.
  • 15. SUN, X.: On relative canonical sheaves of arithmetic surfaces. Math. Z. 223 (1996), 709 - 723. MR 97k:14022
  • 16. SHARP, R. AND H. ZAKERI: Modules of generalized fractions. Mathematika 29 (1982), 32-41.
  • 17. SHARP, R. AND H. ZAKERI: Modules of generalized fractions and balanced big Cohen-Macaulay modules. Commutative Algebra : Durham 1981. London Math. Soc. Lecture Notes 72, (1982), 61 - 82. MR 84j:13021

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 13N05, 14F10

Retrieve articles in all journals with MSC (1991): 13N05, 14F10


Additional Information

Reinhold Hübl
Affiliation: Fachbereich Mathematik, Universiät Regensburg, D – 93040 Regensburg, Germany
Email: reinhold.huebl@mathematik.uni-regensburg.de

Xiaotao Sun
Affiliation: International Centre for Theoretical Physics, Mathematics Section, 34100 Trieste, Italy
Address at time of publication: Institute of Mathematics, Academia Sinica, Beijing 1000 80, People’s Republic of China
Email: xsun@ictp.trieste.it

DOI: https://doi.org/10.1090/S0002-9939-98-04499-2
Received by editor(s): December 18, 1996
Additional Notes: The first author was partially supported by a Heisenberg–Stipendium of the Deutsche Forschungsgemeinschaft
Communicated by: Wolmer V. Vasconcelos
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society