Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Duality and local group cohomology


Author: P. R. Hewitt
Journal: Proc. Amer. Math. Soc. 126 (1998), 1909-1914
MSC (1991): Primary 20J05
MathSciNet review: 1468193
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a group, let $k$ be a field, and let ${\mathcal{L}}$ be a local system - an upwardly directed collection of subgroups whose union is $G$. In this paper we give a short, elementary proof of the following result: If either $A$ is a $k$-$kG$-bimodule, or else $k$ is finite dimensional over its center, then $\operatorname{Ext}^{*}_{G}(A,B^{\vee }) =\varprojlim _{L\in\mathcal{L}} \operatorname{Ext}^{*}_{L}(A,B^{\vee })$. From this we deduce as easy corollaries some recent results of Meierfrankenfeld and Wehrfritz on the cohomology of a finitary module.


References [Enhancements On Off] (What's this?)

  • [AM] Alejandro Adem and R. James Milgram, Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 1994. MR 1317096
  • [B] D. J. Benson, Representations and cohomology. I, Cambridge Studies in Advanced Mathematics, vol. 30, Cambridge University Press, Cambridge, 1991. Basic representation theory of finite groups and associative algebras. MR 1110581
  • [CPS] Edward Cline, Brian Parshall, and Leonard Scott, Cohomology of finite groups of Lie type. I, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 169–191. MR 0399283
  • [M] U Meierfrankenfeld, A note on the cohomology of finitary modules, Proc AMS (to appear).
  • [Ph] R. E. Phillips, Finitary linear groups: a survey, Finite and locally finite groups (Istanbul, 1994) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995, pp. 111–146. MR 1362808
  • [ShW] M. Shirvani and B. A. F. Wehrfritz, Skew linear groups, London Mathematical Society Lecture Note Series, vol. 118, Cambridge University Press, Cambridge, 1986. MR 883801
  • [S] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
  • [W-1] B. A. F. Wehrfritz, Complete reducibility in skew linear groups, J. London Math. Soc. (2) 28 (1983), no. 2, 301–309. MR 713385, 10.1112/jlms/s2-28.2.301
  • [W-2] B Wehrfritz, The complete reducibility of locally completely reducible finitary linear groups, Bull LMS 29 (1997), 173-176. CMP 97:06

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 20J05

Retrieve articles in all journals with MSC (1991): 20J05


Additional Information

P. R. Hewitt
Affiliation: Department of Mathematics, University of Toledo, Toledo, Ohio 43606

DOI: http://dx.doi.org/10.1090/S0002-9939-98-04543-2
Received by editor(s): December 12, 1996
Communicated by: Ronald M. Solomon
Article copyright: © Copyright 1998 American Mathematical Society