Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The moduli of substructures
of a compact complex space


Author: Peter M. Schuster
Journal: Proc. Amer. Math. Soc. 126 (1998), 1983-1987
MSC (1991): Primary 32G13; Secondary 32G05, 14D22
MathSciNet review: 1486750
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a space $W_X$ of fine moduli for the substructures of an arbitrary compact complex space $X$. A substructure $(X,{\cal A})$ of $X$ is given by a subalgebra ${\cal A}$ of the structure sheaf $\text{${\cal O}_{X}$}$ with the additional feature that $(X,{\cal A})$ is also a complex space; $(X,{\cal A})$ and $(X,{\cal A'})$ are called equivalent if and only if ${\cal A}$ and ${\cal A'}$ are isomorphic as subalgebras of $\text{${\cal O}_{X}$}$.

Since substructures are quotients, it is only natural to start with the fine moduli space $Q_X$ of all complex-analytic quotients of $X$. In order to obtain a representable moduli functor of substructures, we are forced to concentrate on families of quotients which satisfy some flatness condition for relative differential modules of higher order. Considering the corresponding flatification of $Q_X$, we realize that its open subset $W_X$ consisting of all substructures turns out to be a complex space which has the required universal property.


References [Enhancements On Off] (What's this?)

  • 1. J. Frisch, Aplatissement en géométrie analytique, Ann. Sci. École Norm. Sup. (4) 1 (1968), 305–312 (French). MR 0236421 (38 #4717)
  • 2. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 0238860 (39 #220)
  • 3. H.-W. Schuster and A. Vogt, The moduli of quotients of a compact complex space, J. Reine Angew. Math. 364 (1986), 51–59. MR 817637 (88d:32033)
  • 4. SCHUSTER, P. M.: Moduln singulärer Kurven mit vorgegebener Normalisierung. Diss., Univ. München 1995. Also at Verlag Mainz, Aachen 1996.
  • 5. SCHUSTER, P. M.: Identifying variable points on a smooth curve. Manuscripta Math. 94 (1997), 195-210. CMP 98:02

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32G13, 32G05, 14D22

Retrieve articles in all journals with MSC (1991): 32G13, 32G05, 14D22


Additional Information

Peter M. Schuster
Affiliation: Mathematisches Institut der Universität, Theresienstr. 39, 80333 München, Germany
Email: pschust@rz.mathematik.uni-muenchen.de

DOI: http://dx.doi.org/10.1090/S0002-9939-98-04815-1
PII: S 0002-9939(98)04815-1
Keywords: Moduli spaces, substructures, subalgebras, quotients
Received by editor(s): September 3, 1996
Communicated by: Eric Bedford
Article copyright: © Copyright 1998 American Mathematical Society