Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rank one lattices whose parabolic isometries have no rotational part


Author: Christoph Hummel
Journal: Proc. Amer. Math. Soc. 126 (1998), 2453-2458
MSC (1991): Primary 53C35; Secondary 22E40, 22E25
DOI: https://doi.org/10.1090/S0002-9939-98-04289-0
MathSciNet review: 1443390
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a result on certain finite index subgroups of rank one lattices which is motivated by cusp closing constructions.


References [Enhancements On Off] (What's this?)

  • [A] L. Auslander, Bieberbach's Theorems on Space Groups and Discrete Uniform Subgroups of Lie Groups, Ann. of Math. 71 (1960), 579-589. MR 22:12161
  • [AF] C.S. Aravinda, F.T. Farrell, Rank 1 Aspherical manifolds which do not support any nonpositively curved metric, Comm. Anal. Geom. 2 (1994), 65-78. MR 96e:53045
  • [B1] A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111-122. MR 26:3823
  • [B2] A. Borel, Introduction aux groupes arithmétiques, Hermann, Paris, 1969. MR 39:5577
  • [BK] S.V. Buyalo, V.L. Kobel'ski[??]i, Cusp Closing of Hyperbolic Manifolds, Geometriae Dedicata 59 (1996), 147-156. MR 97g:53043
  • [E1] P. Eberlein, Lattices in spaces of nonpositive curvature, Ann. Math. (1980), 435-476. MR 82m:53040
  • [E2] P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric, Ann. Sci École Norm. Sup. 27 (1994), 611- 660. MR 95m:53059
  • [GR] H. Garland, M.S. Raghunathan, Fundamental domains in ($\mathbb R$- )rank 1 semisimple Lie groups, Ann. Math. 92 (1970), 279-326. MR 42:1943
  • [H] C. Hummel, Closing Complex Hyperbolic Cusps and Applications, Dissertation, Universität Zürich, 1996.
  • [HS] C. Hummel, V. Schroeder, Cusp Closing in Rank One Symmetric Spaces, Invent. math. 123 (1996), 283-307. MR 97e:53098
  • [K] A. Kaplan, Riemannian Nilmanifolds attached to Clifford Modules, Geometriae Dedicata 11 (1981), 127-136. MR 82h:22008
  • [R] M.S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, Berlin Heidelberg New York, 1972. MR 58:22394a
  • [S] V. Schroeder, A Cusp Closing Theorem, Proc. Amer. Math. Soc. 106 (1989), 797-802. MR 89k:53045
  • [W] B.A.F. Wehrfritz, Infinite Linear Groups, Springer, Berlin Heidelberg New York, 1973. MR 49:436

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53C35, 22E40, 22E25

Retrieve articles in all journals with MSC (1991): 53C35, 22E40, 22E25


Additional Information

Christoph Hummel
Affiliation: Department of Mathematics, University of Pennsylvania, 209 South $33^{rd}$ Street, Philadelphia, Pennsylvania 19104
Address at time of publication: Departement Mathematik, ETH-Zentrum, CH-8092 Zürich, Switzerland
Email: hummelc@math.upenn.edu, hummel@math.ethz.ch

DOI: https://doi.org/10.1090/S0002-9939-98-04289-0
Keywords: Rank one lattices, rotational part, cusp closing
Received by editor(s): December 7, 1996
Received by editor(s) in revised form: January 22, 1997
Additional Notes: The author is supported by the Swiss National Science Foundation.
Dedicated: (Communicated by Christopher Croke)
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society