Asymptotics for Sobolev orthogonal polynomials with coherent pairs: The Jacobi case, type 1

Author:
K. Pan

Journal:
Proc. Amer. Math. Soc. **126** (1998), 2377-2388

MSC (1991):
Primary 42C05

DOI:
https://doi.org/10.1090/S0002-9939-98-04300-7

MathSciNet review:
1443401

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Define and as the th monic orthogonal polynomials with respect to and respectively. The pair is called a coherent pair if there exist non-zero constants such that

One can divide the coherent pairs into two cases: the Jacobi case and the Laguerre case. There are two types for each case: type 1 and 2. We investigate the asymptotic properties and zero distribution of orthogonal polynomials with respect to Sobolev inner product

for the coherent pair : the Jacobi case, type 1.

**[BdM]**K. J. Bruinsma, M. G. de Bruin and H. G. Meijer,*Zero of Sobolev orthogonal polynomials following from coherent pairs*, Report of FTMI 95-65, Delft University of Technology, 1995.**[BSS]**H. P. Blatt, E. B. Saff and M. Simkani,*Jentzsch-Szeg\H{o} type theorems for the zeros of best approximants*, J. London Math. Soc. (2)**38**(1988) 307-316. MR**90a:30004****[C]**E. A. Cohen, Jr.,*Zero distribution and behavior of orthogonal polynomials in the Sobolev space*, SIAM J. Math. Anal.**6**(1975), 105-116. MR**50:13664****[IKNS]**A. Iserles, P. E. Koch, P. Norsett and J. M. Sanz-Serna,*On polynomials with respect to certain Sobolev inner products*, J. Approx. Th.**65**(1991), 151-175. MR**92b:42029****[M1]**H. G. Meijer,*Coherent pairs and zeros of Sobolev-type orthogonal polynomials*, Indag. Math. N.S.**4**(1993), 163-176. MR**94i:42030****[M2]**H. G. Meijer,*Determination of all coherent pairs of functionals*, Report of FTMI 95-41, Delft University of Technology, 1995.**[N]**P. Nevai,*Orthogonal Polynomials*, Memoirs Amer. Math. Soc. 213, Amer. Math. Soc., Providence, RI, 1979. MR**80k:42025****[P]**K. Pan,*On Sobolev orthogonal polynomials with coherent pairs: the Jacobi case*, J. Comp. and Appl. Math.**79**(1997), 249-262. CMP**97:13****[Sz]**G. Szeg\H{o},*Orthogonal polynomials*, Amer. Math. Soc. Colloq. Publ.,**23**, Providence, RI (1975). MR**51:8724**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
42C05

Retrieve articles in all journals with MSC (1991): 42C05

Additional Information

**K. Pan**

Affiliation:
Department of Mathematics, Barry University, Miami Shores, Florida 33161

Email:
pan@euclid.barry.edu

DOI:
https://doi.org/10.1090/S0002-9939-98-04300-7

Received by editor(s):
July 24, 1996

Received by editor(s) in revised form:
January 22, 1997

Communicated by:
J. Marshall Ash

Article copyright:
© Copyright 1998
American Mathematical Society