Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convergence of the Poincaré series
for some classical Schottky groups


Author: Vladimir Mityushev
Journal: Proc. Amer. Math. Soc. 126 (1998), 2399-2406
MSC (1991): Primary 30E25, 30F40, 39B32
DOI: https://doi.org/10.1090/S0002-9939-98-04395-0
MathSciNet review: 1452814
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Poincaré $\theta _2$ -series for a multiply connected circular region can be either convergent or divergent absolutely. In this paper we prove a uniform convergence result for such a region.


References [Enhancements On Off] (What's this?)

  • 1. H.Poincaré, Oeuvres, Gauthier-Villar, Paris t.2, 1916; t.4, 1950; t.9, 1954. MR 97c:01053
  • 2. L.Ford, Automorphic functions, New York, 1929.
  • 3. A.F.Berdon, Geometry of discrete groups, Springer-Verlag, New York, 1986. MR 87h:20014
  • 4. T.Akaza, Singular sets of some Kleinian groups, Nagoya Math J 26 (1966), 127-143. MR 34:7794
  • 5. T.Akaza, K.Inoue, Limit sets of geometrically finite free Kleinian groups, Tohoku Math J 36 (1984), 1-16. MR 85b:30058
  • 6. M.A.Krasnoselski, et al., Approximate solution of operator equations, Nauka, Moscow, 1969; English transl., Wolters-Noordhoff, Groningen, 1974. MR 41:4271; MR 52:6515
  • 7. B.Bojarski, On a boundary value problem of function theory, Soobschenia AN Gruz. SSR 25 (1960), 385-390. (Russian)
  • 8. L.G.Mikhajlov, A new class of singular integral equations, Wolters-Noordhoff Publ., Groningen 1970. MR 41:8812
  • 9. F.D.Gakhov, Boundary value problems, Perg.Press, Oxford, 1966. MR 33:6311
  • 10. V.Mityushev, A method of functional equations for boundary value problems of continuous media, Reports Math Phys 33 (1993), 137-147. MR 95e:30038
  • 11. V.Mityushev, Solution of linear functional equation with shift into domain in class of analytic functions, Izvestia AN BSSR. Ser. Phys.-Math. 5 (1983) 117. (Russian)
  • 12. V.Mityushev, Solution of the Hilbert boundary value problem for a multiply connected domain, Slupskie Prace Mat.-Przyr. 9a (1994), 37-69. MR 96d:30050
  • 13. V.Mityushev, Hilbert boundary value problem for multiply

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 30E25, 30F40, 39B32

Retrieve articles in all journals with MSC (1991): 30E25, 30F40, 39B32


Additional Information

Vladimir Mityushev
Affiliation: Department of Mathematics, Pedagogical College, ul.Arciszewskiego 22b, 76-200 Slupsk, Poland

DOI: https://doi.org/10.1090/S0002-9939-98-04395-0
Received by editor(s): June 2, 1993
Received by editor(s) in revised form: November 17, 1995, and January 23, 1997
Communicated by: Albert Baernstein II
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society