ON JB^*-TRIPLES WHICH ARE M-IDEALS IN THEIR BIDUALS

JUAN CARLOS CABELLO AND EDUARDO NIETO

(Communicated by Palle E. T. Jorgensen)

Abstract. The object of this paper is to investigate JB^*-triples which are M-ideals in their biduals.

M-ideals in their biduals is a subject of current interest (see [9], [10], [11], [12], c_0 and the compact operators on a Hilbert space being representative examples.

Let us recall that a Banach space X is an M-ideal in its bidual (in short, M-ideal) if

$$\|\varphi\| = \|\pi(\varphi)\| + \|\varphi - \pi(\varphi)\|,$$

for all $\varphi \in X^{***}$, where π is the canonical projection of X.

M-ideals can also be characterized by intersection properties of balls. For further information we refer to [2]. In particular, Á. Lima proved (see e.g. [12, p. 43] that a Banach space X is M-ideal in its bidual if, and only if, X has the 2-ball property in its bidual.

On the other hand, it is known (see [14, Theorem 2.6]) that Banach spaces which are M-ideals in their biduals are Asplund spaces (see [5, Chapter VII, Section 5] for a definition).

A JB^*-triple is a complex Banach space J together with a continuous triple product $\{., ., .\} : J \times J \times J \rightarrow J$, which satisfies:

1. $\{x, y, z\}$ is bilinear and symmetric in x and z and conjugate-linear in y.
2. The Jordan identity

$$\{a, b, \{x, y, z\}\} = \{\{a, b, x\}, y, z\} - \{x, \{b, a, y\}, z\} + \{x, y, \{a, b, z\}\}.$$

3. For each $x \in J$, the operator $x\Delta x : J \rightarrow J$ defined by $x\Delta x(\varphi) = \{x, x, \varphi\}$ is a hermitian operator with non-negative spectrum.
4. $\|x\Delta x\| = \|x\|^2$, for each $x \in J$.

As an example, any C^*-algebra with the triple product $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x)$ is a JB^*-triple.

We recall that the bidual J^{**} of a JB^*-triple J is in a natural way a JB^*-triple containing J as a subtriple (see [6]).

An (algebraic) ideal in a JB^*-triple J is a complex subspace F satisfying $\{x, y, F\} \subseteq F$ and $\{x, F, y\} \subseteq F$, for all $x, y \in J$. Observe that it is enough to take $x = y$ in this definition.
For the statement of our main result, let us fix some notation.

Given a closed subspace X of a Banach space Y, and $y \in Y$, we write $P_X(y)$ for the set of best approximants of y in X: \[P_X(y) = \{ x \in X : \| x - y \| = \| y + X \| \}. \]

Also for $x \in X$ and $\epsilon > 0$, $B^*_x(x, \epsilon)$ will mean the open ball in X with center at x and radius ϵ.

In what follows, we identify, if there is no ambiguity, a Banach space Z with $j_Z(Z)$ and Z^* with $j_Z(Z)^*$, where j_Z denotes the natural injection of Z into Z^*.

We say that the natural projection $Z^{***} \longrightarrow Z^*$ is of best approximation if, for every $\varphi \in Z^{***}$, we have that $\pi(\varphi) \in P_{Z^*}(\varphi)$.

Now, we state and prove our main result.

Theorem 1. Let J be a JB^*-triple. The following assertions are equivalent:

1. J is an (algebraic) ideal in J^*.
2. J is an M-ideal in J^*.
3. There exists $t > 1$ such that \[B^*_J(0, t\|F + J\|) \subseteq P_J(F) - P_J(F) \]
 for all $F \in J^{**}$.
4. There exists $\epsilon > 0$ such that \[\|w\| + \epsilon\|f\| \leq \|w + f\| \]
 for all $w \in J^0$ and $f \in J^*$.
5. J is an Asplund space and the natural projection $J^{***} \longrightarrow J^*$ is of best approximation.

The following results are crucial for the proof of Theorem 1.

Lemma 2 ([3, Lemma 1]). Let X be a closed subspace of a Banach space Y and $t \geq 0$. If \[B^*_X(0, t\|y + X\|) \subseteq P_X(y) - P_X(y), \forall y \in Y, \]
then \[\|w\| \leq \|h\| + (1 - t)\|h + X^0\|, \forall h \in Y^*, w \in P_{X^*}(h). \]

Lemma 3 (see [4, Proposition 2.5 and Theorem 4.2]). Let X be a Banach space and $\epsilon > 0$ such that \[\|w\| + \epsilon\|f\| \leq \|w + f\|, \forall w \in X^0, f \in X^*. \]
Then, the following statements are true:

1. For all $\varphi \in X^{***}$, $P_{X^*}(\varphi) = \{ \pi(\varphi) \}$.
2. X is an Asplund space.
3. If Z is a Banach space for which the natural projection π_Z is of best approximation and I is any isometric linear mapping from X^{**} onto Z^{**}, then I is the bitranspose of an isometric linear mapping from X onto Z.

Proof of Lemma 3. 1. Let $\varphi \in X^{***}$ and $x^* \in X^*$ with $\pi(\varphi) \neq x^*$. Then \[\|\varphi - x^*\| \geq \|(\varphi - x^*) - \pi(\varphi - x^*)\| + \epsilon\|\pi(\varphi - x^*)\| > \|\varphi - \pi(\varphi)\|. \]
Therefore, \[P_{X^*}(\varphi) = \{ \pi(\varphi) \}, \forall \varphi \in X^{***}. \]
2. If Z is a separable subspace of X, again Z satisfies (cf. [12, p.111])
\[\|\chi\| \geq \|\chi - \pi_Z(\chi)\| + \varepsilon \|\pi_Z(\chi)\|, \forall \chi \in Z^{**}, \]
where π_Z is the canonical projection of Z.

On the other hand, it is clear that, for every $\chi \in Z^{**}$,
\[\|\chi - 2\pi_Z(\chi)\| \leq \|\chi - \pi_Z(\chi)\| + \varepsilon \|\pi_Z(\chi)\| + (1 - \varepsilon)\|\pi_Z(\chi)\| \leq (2 - \varepsilon)\|\chi\|, \]
and so, by [8, Proposition 2.8], Z^* is separable, that is, X is an Asplund space.

3. Let $I : X^{**} \to Z^{**}$ be an isometric isomorphism. Since X and Z contain no copy of l_1 (see [8, Proposition 2.6]), by [8, Lemma 5.6] and [7, Corollary 5.5], I is w^*-w^*-continuous. In particular, $I^*(Z^*) = X^*$. It is clear that
\[\|\chi + Z^*\| = \|I^*(\chi) + X^*\|, \]
for all $\chi \in Z^{***}$ (of course, $\pi_Z(\chi) \in P_{Z^*}(\chi)$), and so,
\[I^*\pi_Z = \pi I^*. \]

Hence,
\[I^*(Z^0) = X^0. \]

Therefore, by the Hahn-Banach theorem, $I(X) = Z$. Now, we can define $H : X \to Z$ by
\[H(x) = j_Z^{-1}Ij_X(x), \forall x \in X. \]

The operator H is continuous and H^{**} coincides with I on X. Since both operators are w^*-w^*-continuous, $H^{**} = I$. □

Proof of Theorem 1. The equivalence 1) \iff 2) follows from the well-known fact that the closed ideals of a JB^*-triple J are precisely the M-ideals of J (see [1, Theorem 3.2]). The implications 2) \Rightarrow 3) \Rightarrow 4) \Rightarrow 5) have sense for any Banach space J and actually are true in this more general context. Indeed, 2) \Rightarrow 3) (with $t = 2$) have been proved in [14, Theorem 1.2]. Next, we show that 3) \Rightarrow 4). Assume that π is the natural projection of J. Note that
\[\|\varphi - (\varphi - \pi(\varphi))\| = \|\pi(\varphi)\| - \|\varphi - w\|, \forall \varphi \in J^{***}, w \in J^0 \]
so,
\[\varphi - \pi(\varphi) \in P_{J^0}(\varphi) \text{ and } \|\pi(\varphi)\| = \|\varphi + J^0\|. \]
(In particular, if $w \in J^0$, then $w \in P_{J^0}(f + w), \forall f \in J^*$.)

Therefore, by Lemma 2, taking $\varepsilon = t - 1$, $X = J$ and $Y = J^{**}$, the implication 3) \Rightarrow 4) follows.

The implication 4) \Rightarrow 5) follows from the assertions 1 and 2 of Lemma 3.

Finally, assume that condition 5) holds for J. Since J^* is the predual of the JWB^*-triple J^{**} and J^* has the RNP, it follows from [13, Theorem 11] that J^* is isometric to the dual space of a JB^*-triple X which is an ideal (so an M-ideal) in its bidual. Now applying to X the proved implication 2) \Rightarrow 4) (with $Z = J$) and the assertion 3 of Lemma 3, X is isometric to J, so J is an M-ideal in J^{**}, and so 2) holds. □

Remark 4. 1. Theorem 1 is true if we change the JB^*-triple J by a noncommutative JB^*-algebra A and 1) by “A is a two-sided ideal in its bidual”.

Let us recall that an n. c. (not necessarily commutative) JB^*-algebra is a complex Banach space A which is also a complex n. c. Jordan algebra (i.e. $(ab)a =
Let $0 \leq t \leq 1$ and consider in $c_0 \times c_0$ the following norm:

$$
\|(x, y)\|_t = \max\{\|x\|, (1 + t)\|x\|, \|y\|, (1 + t)\|y\|\}, \forall x, y \in c_0.
$$

We will denote $X_t = (c_0 \times c_0, \| \cdot \|_t)$.

It is easy to show the following assertions:

1. $l_\infty \times l_\infty$ with the norm

$$
\|(F, G)\|_{l_\infty} = \max\{\|F\|, \|G\|, (1 + t)\|F\|, (1 + t)\|G\|\}, \forall F, G \in l_\infty
$$

is the bidual of X_t.

2. For every $(F, G) \in X_t^{**}$, we have that

$$
\|(F, G) + X_t\|_t = \max\{|F|, G|, (1 + t)\|F\|, (1 + t)\|G\|\}.
$$

3. $P(F) \times P(G) \subseteq P_t(F, G), \forall F, G \in l_\infty$, where $P_t(F, G) = P_{X_t}(F, G)$.

We will need the following technical lemmas.

Lemma 6. X_t is a proximinal subspace in its bidual and satisfies the following property:

$$
B_{X_t}^{X_t}(0, 2(1 - t))|(F, G) + X_t|_t \subseteq P_t(F, G) - P_t(F, G), \forall F, G \in l_\infty.
$$

Proof. The case $t = 0$ is trivial. Let $t > 0$ and $x, y \in c_0$ satisfy

$$
\|(x, y)\|_t < 2(1 - t)|(F, G) + X_t|_t.
$$
It is clear that one of the following assertions holds:

1. $|F| \leq |G|$
2. $|G| + t \mid F \geq |F| \mid G|$
3. $|F| \mid G| + t \mid F|$

Case 1. $(\|F, G\| + X_i) = (1 + t) \mid G\).

By assumption on (x, y),

$$\|y\| < 2 |G|$$

(and so, by (1), there are $y_1, y_2 \in P(G)$ with $y = y_1 - y_2$, and

$$\|x\| < 2(1 - t^2) |G|.$$

If $(1 - t^2) |G| < |F|$, then, by (1), there are $x_1, x_2 \in P(F)$ such that $x = x_1 - x_2$, and so, $(x_i, y_i) \in P(F) \times P(G) \subseteq P_i(F, G)$, for $i = 1, 2$.

In the other case, if $\alpha = \frac{|F|}{(1 - t^2)|G|}$, then, by (1), there are $z_1, z_2 \in P(F)$ such that $\alpha x = z_1 - z_2$.

Let $x_1 = z_1 + \frac{1 - \alpha}{2}x$ and $x_2 = z_2 - \frac{1 - \alpha}{2}x$. It is clear that $x = x_1 - x_2$ and

$$\|F - x_i\| \leq \|F - z_i\| + \frac{1 - \alpha}{2} \|x\|$$

$$\leq |F| + (1 - \alpha)(1 - t^2) |G| = (1 - t^2) |G|,$$ for $i = 1, 2$

and so,

$$\|(F, G) - (x_i, y_i)\|_t \leq (1 + t) \mid G\), for $i = 1, 2$;

that is, in any case, $(x_i, y_i) \in P_i(F, G)$, for $i = 1, 2$, as required.

Case 2. $(\|F, G\| + X_i) = |G| + t \mid F\|)$.

By assumption,

$$(1 + t)\|y\| < 2(1 - t)(|G| + t \mid F\|) \leq 2 |G|,$$

and

$$\|x\| < 2(1 - t)(|G| + t \mid F\|) \leq 2 |F|.$$

Therefore, by (1), $(x, y) \in P(F) \times P(G) - P(F) \times P(G) \subseteq P_i(F, G) - P_i(F, G)$, as required.

Case 3. $(\|F, G\| + X_i) = \mid F\|)$.

Again, by assumption on (x, y),

$$\|x\| < 2 |F|$$

(and so, by (1), there are $x_1, x_2 \in P(F)$ such that $x = x_1 - x_2$, and

$$\|y\| < 2(1 - t) |F|.$$

If $\alpha = \frac{|G|}{(1 - t^2)|F|}$, then, by (1), there are $z_1, z_2 \in P(G)$ such that $\alpha y = z_1 - z_2$.

Let $y_1 = z_1 + \frac{1 - \alpha}{2}y$ and $y_2 = z_2 - \frac{1 - \alpha}{2}y$. It is clear that $y = y_1 - y_2$ and

$$\|(F, G) - (x_i, y_i)\|_t \leq |F|,$$ for $i = 1, 2$;

that is, $(x_i, y_i) \in P_i(F, G)$, for $i = 1, 2$, as required.

\[\square\]
Lemma 7. \(X_t\) is an M-ideal if, and only if, \(t = 0\).

Proof. If \(t = 0\), then \(X_0\) is an M-ideal.

Suppose that \(t > 0\). Let \((F,G) \in X_t^{**}\) such that
\[0 \in P(F) \setminus P(G)\text{ and } |G| + t |F| \geq |F| > \|G\|.

Then,
\[\|(F,G) + X_t\|_t = |G| + t |F| \text{ and } \|(F,G)\|_t = \|G\| + t\|F\|.

In this case, it is easy to show that \(P_t(F,G) = P(F) \times P(G)\),
and
\[d_t(0, P_t(F,G)) \geq (1 + t)d(0, P(G)).\]

Therefore, by (2), we have that
\[\|(F,G) + X_t\|_t + d_t(0, P_t(F,G)) \geq |G| + t |F| + (1 + t)d(0, P(G))
= \|G\| + t |F| + td(0, P(G)) > \|(F,G)\|_t.

In particular, again by (2), \(X_t\) is not an M-ideal.

Now, to conclude the proof of Proposition 5, it is enough to take \(r = 2(1 - t)\),
with \(0 < t \leq 1\). \(\square\)

References

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

E-mail address: jcabello@goliat.ugr.es