ON JB*-TRIPLES WHICH ARE M-IDEALS IN THEIR BIDUALS

JUAN CARLOS CABELLO AND EDUARDO NIETO

(Communicated by Palle E. T. Jorgensen)

Abstract. The object of this paper is to investigate JB*-triples which are M-ideals in their biduals.

M-ideals in their biduals is a subject of current interest (see [9], [10], [11], [12], [14]), c0 and the compact operators on a Hilbert space being representative examples.

Let us recall that a Banach space X is an M-ideal in its bidual (in short, M-ideal) if
\[\|\varphi\| = \|\pi(\varphi)\| + \|\varphi - \pi(\varphi)\|, \]
for all $\varphi \in X^{**}$, where π is the canonical projection of X.

M-ideals can also be characterized by intersection properties of balls. For further information we refer to [2]. In particular, A. Lima proved (see e.g. [12, p. 43]) that a Banach space X is M-ideal in its bidual if, and only if, X has the 2-ball property in its bidual.

On the other hand, it is known (see [14, Theorem 2.6]) that Banach spaces which are M-ideals in their biduals are Asplund spaces (see [5, Chapter VII, Section 5] for a definition).

A JB*-triple is a complex Banach space J together with a continuous triple product $\{.,.,.\} : J \times J \times J \to J$, which satisfies:
1. $\{x, y, z\}$ is bilinear and symmetric in x and z and conjugate-linear in y.
2. The Jordan identity
\[\{a, b, \{x, y, z\}\} = \{\{a, b, x\}, y, z\} - \{x, \{b, a, y\}, z\} + \{x, y, \{a, b, z\}\}. \]
3. For each $x \in J$, the operator $x\Delta x : J \to J$ defined by $x\Delta x(y) = \{x, x, y\}$ is a hermitian operator with non-negative spectrum.
4. $\|x\Delta x\| = \|x\|^2$, for each $x \in J$.

As an example, any C*-algebra with the triple product $\{x, y, z\} = \frac{1}{2}(xy^*z + zy^*x)$ is a JB*-triple.

We recall that the bidual J^{**} of a JB*-triple J is in a natural way a JB*-triple containing J as a subtriple (see [6]).

An (algebraic) ideal in a JB*-triple J is a complex subspace F satisfying $\{x, y, F\} \subseteq F$ and $\{x, F, y\} \subseteq F$, for all $x, y \in J$. Observe that it is enough to take $x = y$ in this definition.
For the statement of our main result, let us fix some notation.

Given a closed subspace \(X \) of a Banach space \(Y \), and \(y \in Y \), we write \(P_X(y) \) for the set of best approximants of \(y \) in \(X \):

\[
P_X(y) = \{ x \in X : \| x - y \| = \| y + X \| \}.
\]

Also for \(x \in X \) and \(\epsilon > 0 \), \(B^X_\epsilon(x, \epsilon) \) will mean the open ball in \(X \) with center at \(x \) and radius \(\epsilon \).

In what follows, we identify, if there is no ambiguity, a Banach space \(Z \) with \(j_Z(Z) \) and \(Z^o \) with \(j_Z(Z)^\circ \), where \(j_Z \) denotes the natural injection of \(Z \) into \(Z^\star \).

We say that the natural projection \(Z^\star \star \rightarrow Z^* \) is of best approximation if, for every \(\varphi \in Z^\star \star \), we have that \(\pi(\varphi) \in P_{Z^*}(\varphi) \).

Now, we state and prove our main result.

Theorem 1. Let \(J \) be a JB*-triple. The following assertions are equivalent:

1. \(J \) is an (algebraic) ideal in \(J^\star \).
2. \(J \) is an \(M \)-ideal in \(J^\star \).
3. There exists \(t > 1 \) such that
 \[
 B^J_\epsilon(0, t\| F + J \|) \subseteq P_J(F) - P_J(F)
 \]
 for all \(F \in J^\star \).
4. There exists \(\epsilon > 0 \) such that
 \[
 \| w \| + \epsilon \| f \| \leq \| w + f \|
 \]
 for all \(w \in J^o \) and \(f \in J^* \).
5. \(J \) is an Asplund space and the natural projection \(J^\star \star \rightarrow J^* \) is of best approximation.

The following results are crucial for the proof of Theorem 1.

Lemma 2 ([3, Lemma 1]). Let \(X \) be a closed subspace of a Banach space \(Y \) and \(t \geq 0 \). If

\[
B^X_\epsilon(0, t\| y + X \|) \subseteq P_X(y) - P_X(y), \forall y \in Y,
\]

then

\[
\| w \| \leq \| h \| + (1 - t)\| h + X^o \|, \forall h \in Y^*, w \in P_X^\star(h).
\]

Lemma 3 (see [4, Proposition 2.5 and Theorem 4.2]). Let \(X \) be a Banach space and \(\epsilon > 0 \) such that

\[
\| w \| + \epsilon \| f \| \leq \| w + f \|, \forall w \in X^o, f \in X^*.
\]

Then, the following statements are true:

1. For all \(\varphi \in X^\star \star \), \(P_{X^\star}(\varphi) = \{ \pi(\varphi) \} \).
2. \(X \) is an Asplund space.
3. If \(Z \) is a Banach space for which the natural projection \(\pi_Z \) is of best approximation and \(I \) is any isometric linear mapping from \(X^\star \star \) onto \(Z^\star \star \), then \(I \) is the bitranspose of an isometric linear mapping from \(X \) onto \(Z \).

Proof of Lemma 3. 1. Let \(\varphi \in X^\star \star \) and \(x^* \in X^* \) with \(\pi(\varphi) \neq x^* \). Then

\[
\| \varphi - x^* \| \geq \| (\varphi - x^*) - \pi(\varphi - x^*) \| + \epsilon \| \pi(\varphi - x^*) \| > \| \varphi - \pi(\varphi) \|.
\]

Therefore,

\[
P_{X^\star}(\varphi) = \{ \pi(\varphi) \}, \forall \varphi \in X^\star \star.
\]
2. If \(Z \) is a separable subspace of \(X \), again \(Z \) satisfies (cf. [12, p.111])
\[
\|\chi\| \geq \|\chi - \pi_Z(\chi)\| + \varepsilon\|\pi_Z(\chi)\|, \quad \forall \chi \in Z^{***},
\]
where \(\pi_Z \) is the canonical projection of \(Z \).

On the other hand, it is clear that, for every \(\chi \in Z^{***} \),
\[
\|\chi - 2\pi_Z(\chi)\| \leq \|\chi - \pi_Z(\chi)\| + \epsilon\|\pi_Z(\chi)\| + (1 - \epsilon)\|\pi_Z(\chi)\| \leq (2 - \epsilon)\|\chi\|,
\]
and so, by [8, Proposition 2.8], \(Z^* \) is separable, that is, \(X \) is an Asplund space.

3. Let \(I : X^{**} \to Z^{**} \) be an isometric isomorphism. Since \(X \) and \(Z \) contain no copy of \(l_1 \) (see [8, Proposition 2.6]), by [8, Lemma 5.6] and [7, Corollary 5.5], \(I \) is \(w^*-w^* \)-continuous. In particular, \(I^*(Z^*) = X^* \). It is clear that
\[
\|\chi + Z^*\| = \|I^*(\chi) + X^*\|,
\]
for all \(\chi \in Z^{***} \) (of course, \(\pi_Z(\chi) \in P_{Z^*}(\chi) \)), and so,
\[
I^*\pi_Z = \pi I^*.
\]
Hence,
\[
I^*(Z^*) = X^*.
\]

Therefore, by the Hahn-Banach theorem, \(I(X) = Z \). Now, we can define \(H : X \to Z \) by
\[
H(x) = j_Z^{-1}I_j\chi (x), \quad \forall x \in X.
\]

The operator \(H \) is continuous and \(H^{**} \) coincides with \(I \) on \(X \). Since both operators are \(w^*-w^* \)-continuous, \(H^{**} = I \).

Proof of Theorem 1. The equivalence 1) \(\Leftrightarrow \) 2) follows from the well-known fact that the closed ideals of a \(JB^* \)-triple \(J \) are precisely the M-ideals of \(J \) (see [1, Theorem 3.2]). The implications 2) \(\Rightarrow \) 3) \(\Rightarrow \) 4) \(\Rightarrow \) 5) have sense for any Banach space \(J \) and actually are true in this more general context. Indeed, 2) \(\Rightarrow \) 3) (with \(t = 2 \)) have been proved in [14, Theorem 1.2]. Next, we show that 3) \(\Rightarrow \) 4). Assume that \(\pi \) is the natural projection of \(J \). Note that
\[
\|\varphi - (\varphi - \pi(\varphi))\| = \|\pi(\varphi)\| = \|\pi(\varphi - w)\| \leq \|\varphi - w\|, \quad \forall \varphi \in J^{***}, w \in J^o
\]
so,
\[
\varphi - \pi(\varphi) \in P_{J^o}(\varphi) \quad \text{and} \quad \|\pi(\varphi)\| = \|\varphi + J^o\|.
\]
(In particular, if \(w \in J^o \), then \(w \in P_{J^o}(f + w), \forall f \in J^* \).) Therefore, by Lemma 2, taking \(\epsilon = t - 1 \), \(X = J \) and \(Y = J^{**} \), the implication 3) \(\Rightarrow \) 4) follows.

The implication 4) \(\Rightarrow \) 5) follows from the assertions 1 and 2 of Lemma 3.

Finally, assume that condition 5) holds for \(J \). Since \(J^* \) is the predual of the \(JBW^* \)-triple \(J^{**} \) and \(J^* \) has the RNP, it follows from [13, Theorem 11] that \(J^* \) is isometric to the dual space of a \(JB^* \)-triple \(X \) which is an ideal (so an M-ideal) in its bidual. Now applying to \(X \) the proved implication 2) \(\Rightarrow \) 4) (with \(Z = J \) and the assertion 3 of Lemma 3, \(X \) is isometric to \(J \), so \(J \) is an M-ideal in \(J^{**} \), and so 2) holds.

Remark 4. 1. Theorem 1 is true if we change the \(JB^* \)-triple \(J \) by a noncommutative \(JB^* \)-algebra \(A \) and 1) by “\(A \) is a two-sided ideal in its bidual”.

Let us recall that an n. c. (not necessarily commutative) \(JB^* \)-algebra is a complex Banach space \(A \) which is also a complex n. c. Jordan algebra (i.e. \((ab)a =
suitable triple product and the given norm. Since, for n. c. \(JB \)-algebras, M-ideals and closed two-sided ideals are the same [15, Theorem 4] and the bidual of any \(JB \)-algebra is a \(JB \)-algebra containing the given one as a subalgebra [15, Theorem 1.7], the above announced result follows directly from our theorem.

2. Assertions 2), 3) are not equivalent in an arbitrary Banach space, in fact we have the following

Proposition 5. For every \(r \in [0, 2[\), there is a Banach space \(X \) failing to be M-ideal and satisfying \[
B^*_X(0, r\|x^{**} + X\|) \subseteq P_X(x^{**}) - P_X(x^{**}), \forall x^{**} \in X^{**}.
\]

Proof. In the first place, we recall (see [14, Theorem 1.2 and Proposition 1.5]) that a Banach space \(X \) is an M-ideal if, and only if,

\[
B^*_X(0, 2\|x^{**} + X\|) \subseteq P_X(x^{**}) - P_X(x^{**}), \forall x^{**} \in X^{**},
\]

in particular (cf. [17, Theorem 4] and [16, Proposition 3]), \(X \) is a proximinal subspace in \(X^{**} \), and, for every \(x^{**} \in X^{**} \) and \(x \in X \),

\[
\|x^{**} - x\| = \|x^{**} + X\| + d(x, P_X(x^{**}))
\]

holds.

Let us consider \(l_\infty \) with the usual norm \(\| \cdot \| \) and denote, for every \(F \in l_\infty \),

\[
| F | = \| F + c_0 \| \quad \text{and} \quad P(F) = P_{c_0}(F).
\]

Let \(0 \leq t \leq 1 \) and consider in \(c_0 \times c_0 \) the following norm:

\[
\|(x, y)\|_t = \max\{\|x\|, \|y\| + t|\|x\||, (1 + t)|\|y\||\}, \forall x, y \in c_0.
\]

We will denote \(X_t = (c_0 \times c_0, \| \cdot \|_t) \).

It is easy to show the following assertions:

1. \(l_\infty \times l_\infty \) with the norm

\[
\|(F, G)\|_t = \max\{| |F| , |G| + t| |F| | , (1 + t)| |G| |\}, \forall F, G \in l_\infty
\]

is the bidual of \(X_t \),

2. For every \((F, G) \in X_t^{**} \), we have that

\[
\|(F, G) + X_t\|_t = \max\{| |F| + |G| + t | |F| | , (1 + t)| |G| |\}.
\]

3. \(P(F) \times P(G) \subseteq P_t(F, G), \forall F, G \in l_\infty \), where \(P_t(F, G) = P_{c_t}(F, G) \).

We will need the following technical lemmas.

Lemma 6. \(X_t \) is a proximinal subspace in its bidual and satisfies the following property:

\[
B^*_X(0, 2(1 - t))\|(F, G) + X_t\|_t) \subseteq P_t(F, G) - P_t(F, G), \forall F, G \in l_\infty.
\]

Proof. The case \(t = 0 \) is trivial. Let \(t > 0 \) and \(x, y \in c_0 \) satisfy

\[
\|(x, y)\|_t < 2(1 - t)\|(F, G) + X_t\|_t.
\]
It is clear that one of the following assertions holds:
1. $|F| \leq |G|$.
2. $|G| + t |F| \geq |F| > |G|$.
3. $|F| > |G| + t |F|$.

Case 1. $\|\left((F,G) + X_i\right)\|_t = (1 + t) |G|$.

By assumption on (x, y),

$$\|y\| < 2 |G|$$

(and so, by (1), there are $y_1, y_2 \in P(G)$ with $y = y_1 - y_2$), and

$$\|x\| < 2(1 - t^2) |G|.$$

If $(1 - t^2) |G| < |F|$, then, by (1), there are $x_1, x_2 \in P(F)$ such that $x = x_1 - x_2$, and so, $(x_1, y_i) \in P(F \times P(G) \subseteq P_t(F, G)$, for $i = 1, 2$.

In the other case, if $\alpha = \frac{|F|}{(1 - t^2) |G|}$, then, by (1), there are $z_1, z_2 \in P(F)$ such that $\alpha x = z_1 - z_2$.

Let $x_1 = z_1 + \frac{1-\alpha}{2} x$ and $x_2 = z_2 - \frac{1-\alpha}{2} x$. It is clear that $x = x_1 - x_2$ and

$$\|F - x_i\| \leq \|F - z_i\| + \frac{1-\alpha}{2} \|x\|$$

$$\leq |F| + (1 - \alpha)(1 - t^2) |G| = (1 - t^2) |G|,$$ for $i = 1, 2$

and so,

$$\|\left((F,G) - (x_i, y_i)\right)\|_t \leq (1 + t) |G|,$$ for $i = 1, 2$;

that is, in any case, $(x_i, y_i) \in P_t(F, G)$, for $i = 1, 2$, as required.

Case 2. $\|\left((F,G) + X_i\right)\|_t = |G| + t |F|)$.

By assumption,

$$(1 + t)\|y\| < 2(1 - t)(|G| + t |F|)) \leq 2 |G|,$$

and

$$\|x\| < 2(1 - t)(|G| + t |F|) \leq 2 |F|.$$

Therefore, by (1), $(x, y) \in P(F \times P(G) - P(F \times P(G) \subseteq P_t(F, G) - P_t(F, G)$, as required.

Case 3. $\|\left((F,G) + X_i\right)\|_t = |F|)$.

Again, by assumption on (x, y),

$$\|x\| < 2 |F|$$

(and so, by (1), there are $x_1, x_2 \in P(F)$ such that $x = x_1 - x_2$), and

$$\|y\| < 2(1 - t) |F|.$$

If $\alpha = \frac{|G|}{(1 - t^2) |F|}$, then, by (1), there are $z_1, z_2 \in P(G)$ such that $\alpha y = z_1 - z_2$.

Let $y_1 = z_1 + \frac{1-\alpha}{2} y$ and $y_2 = z_2 - \frac{1-\alpha}{2} y$. It is clear that $y = y_1 - y_2$ and

$$\|\left((F,G) - (x_i, y_i)\right)\|_t \leq |F|,$$ for $i = 1, 2$;

that is, $(x_i, y_i) \in P_t(F, G)$, for $i = 1, 2$, as required.

\[\square \]
Lemma 7. \(X_t \) is an M-ideal if, and only if, \(t = 0 \).

Proof. If \(t = 0 \), then \(X_0 \) is an M-ideal.

Suppose that \(t > 0 \). Let \((F,G) \in X_t^{**}\) such that
\[
0 \in P(F) \setminus P(G) \quad \text{and} \quad |G| + t|F| \geq |F| > \|G\|.
\]
Then,
\[
\| (F,G) + X_t \|_t = |G| + t|F| \quad \text{and} \quad \| (F,G) \|_t = \|G\| + t\|F\|.
\]
In this case, it is easy to show that
\[
P_t(F,G) = P(F) \times P(G),
\]
and
\[
d_t(0, P_t(F,G)) \geq (1 + t)d(0, P(G)).
\]
Therefore, by (2), we have that
\[
\| (F,G) + X_t \|_t + d_t(0, P_t(F,G))
\]
\[
\geq |G| + t|F| + (1 + t)d(0, P(G))
\]
\[
= \|G\| + t|F| + td(0, P(G)) > \|(F,G)\|_t.
\]
In particular, again by (2), \(X_t \) is not an M-ideal.

Now, to conclude the proof of Proposition 5, it is enough to take \(r = 2(1 - t) \), with \(0 < t \leq 1 \).

References

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

E-mail address: jcabello@goliat.ugr.es