Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On $JB ^{*}$-triples which are M-ideals in their biduals


Authors: Juan Carlos Cabello and Eduardo Nieto
Journal: Proc. Amer. Math. Soc. 126 (1998), 2277-2283
MSC (1991): Primary 46B20; Secondary 17C65
DOI: https://doi.org/10.1090/S0002-9939-98-04434-7
MathSciNet review: 1459113
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The object of this paper is to investigate $JB^{\ast}$-triples which are M-ideals in their biduals.


References [Enhancements On Off] (What's this?)

  • 1. T. Barton and R. Timoney, Weak$^{\ast}$-continuity of Jordan triple products and its applications. Math. Scand. 59 (1986) 177-191. MR 88d:46129
  • 2. E. Behrends, M-Structure and the Banach-Stone Theorem. Lecture Notes in Math. 736. Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 81b:46002
  • 3. J. C. Cabello, Containing of $l_{1}$ or $c_{0}$ and the best approximation. Collect. Math. 41, 3 (1990) 233-241.
  • 4. J. C. Cabello and E. Nieto, On properties of M-ideals. To appear in Rocky Mountain J. Math.
  • 5. J. Diestel and J. J. Uhl Jr., Vector Measures. Mathematical Surveys 15. American Mathematical Society, Providence, Rhode Island, 1977. MR 56:12216
  • 6. S. Dineen, Complete holomorphic vector fields on the second dual of a Banach space. Math. Scand. 59 (1986) 131-142. MR 88h:32029
  • 7. G. Godefroy and N. J. Kalton, The ball topology and its applications, Contemp. Math. 85 Amer. Math. Soc. (1989), 195-237. MR 90c:46022
  • 8. G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Mathematica 104 (1) (1993). MR 94k:46024
  • 9. G. Godefroy and D. Li, Banach spaces which are M-ideals in their biduals have property (u). Ann Inst. Fourier 39 (1989) 361-371. MR 90j:46020
  • 10. G. Godefroy and P. Saab, Quelques espaces de Banach ayant les propiets (V) ou (V$^{\ast}$) de A. Pe{\l}czy\'{n}ski. C. R. Acad. Sc. Paris, Sr. A 303 (1986) 503-506. MR 87m:46036
  • 11. P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals. Trans. Amer. Math. Soc. 283 (1984) 253-264. MR 86b:46016
  • 12. P. Harmand, D. Werner and W. Werner, M-ideals in Banach spaces and Banach algebras. Lecture Notes in Math. 1547. Springer-Verlag, Berlin-Heidelberg-New York, 1993. MR 94k:46022
  • 13. D. Li, Espaces L-facteurs de leurs biduaux: bonne disposition, meilleure approximation et propiet de Radon-Nikodym. Quart. J. Math. Oxford (2) 38 (1987) 229-243. MR 88h:46024
  • 14. Å. Lima, On M-ideals and best approximation. Indiana Univ. Math. J. 31 (1982) 27-36. MR 83b:46021
  • 15. R. Payá, J. Pérez and A. Rodríguez-Palacios, Noncommutative Jordan C$^{\ast}$-algebras. Manuscr. Math. 37 (1982) 87-120. MR 83e:46051
  • 16. R. Payá and D. Yost, The two-ball property: transitivity and examples. Mathematika 35 (1988) 190-197. MR 90a:46036
  • 17. D. Yost, The n-ball properties in real and complex Banach spaces. Math. Scand. 50 (1982) 100-110. MR 83h:46030

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46B20, 17C65

Retrieve articles in all journals with MSC (1991): 46B20, 17C65


Additional Information

Juan Carlos Cabello
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Email: jcabello@goliat.ugr.es

Eduardo Nieto
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

DOI: https://doi.org/10.1090/S0002-9939-98-04434-7
Received by editor(s): July 19, 1995
Received by editor(s) in revised form: January 2, 1997
Additional Notes: This research was partially supported by M.E.C., Project No. PB96/1406.
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society