Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Mergelyan approximation property
on pseudoconvex domains in $\mathbb{C}^{n}$


Author: Sanghyun Cho
Journal: Proc. Amer. Math. Soc. 126 (1998), 2285-2289
MSC (1991): Primary 32F20, 32H40
DOI: https://doi.org/10.1090/S0002-9939-98-04435-9
MathSciNet review: 1459114
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\Omega $ be a smoothly bounded pseudoconvex domain of finite type in $\mathbb{C}^{n}$. We prove the Mergelyan approximation property in various topologies on $\Omega $ when the estimates for $\overline{\partial }$-equation are known in the corresponding topologies.


References [Enhancements On Off] (What's this?)

  • 1. Catlin, D.W., Global regularity of the $\overline{\partial }$-Neumann problem, Proc. Sympos. Pure Math. 41 (1984), 39-49. MR 85j:32033
  • 2. Chang, D.C., Nagel, A. and Stein, E., Estimates for the $\overline{\partial }$-Neumann problem in pseudoconvex domains of finite type in $\mathbb{C}^{2}$, Acta Math. 169 (1992), 153-228. MR 93k:32025
  • 3. Cho, S., Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z. 211 (1992), 105-119. MR 94h:32030
  • 4. H. R. Cho, S. Cho, and K. H. Shon, Stability of the estimates for $\overline{\partial }$-equation on compact pseudoconvex complex manifolds, Kyushu J. Math. 48-1 (1994), 19-34. MR 95k:32017
  • 5. Cho, H.R. and Cho, S., Holomorphic approximation on compact pseudoconvex complex manifolds, J. of Geom. Anal. (to appear).
  • 6. Cho, S., Ahn, H. and Kim, S., Stability of Hölder estimates for $\overline{\partial }$ on pseudoconvex domains of finite type in $\mathbb{C}^{2}$, Nagoya Math. J. (to appear).
  • 7. Fefferman, C. and Kohn, J.J., Hölder estimates on domains of complex dimension two and on three dimensional CR manifolds, Adv. Math. 69 (1988), 233-303. MR 89g:32027
  • 8. Fefferman, C., Kohn, J.J. and Machedon, M., Hölder estimates on CR manifolds with diagonalizable Levi form, Adv. Math. 84 (1990), 1-90. MR 92a:32019
  • 9. G. M. Henkin, Integral representations of functions which are holomorphic in strictly pseudoconvex regions, and some applications, Math. Sb. 78 (1969), 611-632; , Engl. Transl.: Math. USSR. Sb. 7 (1969), 597-616. MR 40:2902
  • 10. N. Kerzman, Hölder and $L^{p}$ estimates for solutions of $\overline{\partial }u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301-379. MR 43:7658
  • 11. I. Lieb, Ein Approximationssatz auf streng pseudokonvexen Gebieten, Math. Ann. 184 (1969), 56-60. MR 41:7146
  • 12. Range, R.M., Integral kernels and Hölder estimates for $\overline{\partial }$ on pseudoconvex domains of finite type in $\mathbb{C}^{2}$, Math.Ann. 288 (1990), 63-74. MR 91j:32018

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32F20, 32H40

Retrieve articles in all journals with MSC (1991): 32F20, 32H40


Additional Information

Sanghyun Cho
Affiliation: Department of Mathematics, Sogang University, C.P.O. Box 1142, Seoul 121-742, Korea
Email: shcho@ccs.sogang.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-98-04435-9
Keywords: Mergelyan property, Lipschitz continuity, finite 1-type
Received by editor(s): January 7, 1997
Additional Notes: The author was partially supported by Basic Sci. Res. fund BSRI-97-1411, and by GARC-KOSEF, 1997.
Communicated by: Steven R. Bell
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society