An application of Schauder's fixed point theorem with respect to higher order BVPs

Author:
Fu-Hsiang Wong

Journal:
Proc. Amer. Math. Soc. **126** (1998), 2389-2397

MSC (1991):
Primary 34B15

DOI:
https://doi.org/10.1090/S0002-9939-98-04709-1

MathSciNet review:
1476399

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We shall provide conditions on the function . The higher order boundary value problem

has at least one solution.

**[1]**R. P. Agarwal and F. H. Wong,*Existence of positive solutions for higher order boundary value problems*, Nonlinear Studies, to appear.**[2]**R. P. Agarwal and F. H. Wong,*Existence of positive solutions for non-positive higher order BVP's*, to appear in Computational and Applied Mathematics.**[3]**R. P. Agarwal and F. H. Wong,*An application of topological transervality with respect to non-positive higher order BVP's*, to appear.**[4]**V. Anuradha, D. D. Hai and R. Shivaji,*Existence results for superlinear semipositive BVP's*, Proc. Amer. math. Soc**124**(1996), 757-763. MR**96f:34030****[5]**P. B. Bailey, L. F. Shampine and P. E. Waltman,*Nonlinear Two-point Boundary Value Problems*, Academic Press, New York, 1968. MR**37:6524****[6]**C. Bandle and M.K. Kwong,*Semilinear elliptic problems in annular domains*, Z. Angew. Math. Phys.**40**(1989), 245-257. MR**90m:35062****[7]**Y. S. Choi and G. S. Ludford,*An unexpected stability result of the near-extinction diffusion flame for non-unity Lewis numbers*, Q. J. Mech. Appl. Math**42 part 1**(1989), 143-158. MR**91b:80022****[8]**C. J. Chyan and J. Henderson,*Positive solutions for singular higher order nonlinear equations*, Diff. Eqns. Dyn. Sys**2**(1994), 153-160. MR**97b:34017****[9]**E. N. Dancer,*On the structure of solutions of an equation in catalysis theory when a parameter is large*, J. Diff. Eqns**37**(1980), 404-437. MR**82b:35018****[10]**H. Dang and K. Schmitt,*Existence of positive solutions for semiliear elliptic equations in annular domain*, Diff. and Integ. Equs.**7**(1994), 747-758. MR**94m:35020****[11]**K. Deimling,*Nonlinear functional analysis*, Springer, New York, 1985. MR**86j:47001****[12]**J. Dugundji and A. Granas,*Fixed point theory, Monografie Mat*, PWN, Warsaw, 1982. MR**83j:54038****[13]**L. H. Erbe and H. Wang,*On the existence of positive solutions of ordinary differential equations*, Proc. Amer. Math. Soc.**120**(1994), 743-748. MR**94e:34025****[14]**X. Garaizar,*Existence of positive radial solutions for semiliear elliptic equations in the annulus*, J. Differential Equations**70**(1987), 69-72. MR**89f:35019****[15]**A. Granas, R. B. Guenther and J. W. Lee,*On a theorem of S. Bernstein*, Pac. Jour. Math.**73**(1977), 1-16. MR**57:10068****[16]**A. Granas, R. B. Guenther and J. W. Lee,*Nonlinear boundary value problems for some classes of ordinary differential equations*, Rocky Mount. J. Math.**10**(1980), 35-58. MR**81h:34017****[17]**J. Henderson,*Singular boundary value problems for difference equations*, Dynamic Systems and Applications**1**(1992), 271-282. MR**94a:39004****[18]**P. Kelevedjiev,*Existence of solutions for two-point boundary value problems*, Nonlinear Analysis T. M. & A.**22**(1994), 217-224. MR**95a:34029****[19]**P. Kelevedjiev,*Nonexistence of solutions for two-point boundary value problems*, Nonlinear Analysis T. M. & A.**22**(1994), 225-228. MR**95a:34030****[20]**M. A. Krasnoselskii,*Positive solutions of operator equations*, Noordhoff, Groningen, 1964. MR**31:6107****[21]**J. W. Lee and D. O'Regan,*Nonlinear boundary value problems in Hilbert spaces*, Jour. Math. Anal. Appl.**137**(1989), 59-69. MR**90a:34048****[22]**J. Mawhin,*Topological degree and boundary value problems for nonlinear differential equations*, NSFCB Regional Conference Series in Math., vol. No. 40, Amer. Math. Soc., Providence. R. I., 1979.**[23]**N. Vasilev and I. Klokov,*Bases of the theory of boundary value problems for ordinary differential equations*, Izdat ``Zinatne.'' Riga, 1978.**[24]**H. Wang,*On the existence of positive solutions for semilinear elliptic equations in the annulus*, J. Differential Equations**109**(1994), 1-7. MR**95c:35093****[25]**F. H. Wong,*Existence of positive solutions of singular boundary value problems*, Nonlinear Analysis T.M.& A.**21**(1993), 397-406. MR**94i:34056**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
34B15

Retrieve articles in all journals with MSC (1991): 34B15

Additional Information

**Fu-Hsiang Wong**

Affiliation:
Department of Mathematics and Science, National Taipei Teacher’s College, 134, Ho-Ping E. Rd. Sec. 2, Taipei 10659, Taiwan, Republic of China

Email:
wong@tea.ntptc.edu.tw

DOI:
https://doi.org/10.1090/S0002-9939-98-04709-1

Keywords:
Higher order boundary value problems,
solution,
operator equation,
Green's function,
Schauder's fixed point theorem,
upper-lower-solutions

Received by editor(s):
January 22, 1997

Communicated by:
Hal L. Smith

Article copyright:
© Copyright 1998
American Mathematical Society