Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An application of Schauder's fixed point theorem with respect to higher order BVPs


Author: Fu-Hsiang Wong
Journal: Proc. Amer. Math. Soc. 126 (1998), 2389-2397
MSC (1991): Primary 34B15
DOI: https://doi.org/10.1090/S0002-9939-98-04709-1
MathSciNet review: 1476399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We shall provide conditions on the function $f(t,u_{1},\cdots , u_{n-1})$. The higher order boundary value problem

\begin{equation*}\begin{cases}(E)~~ u^{(n)}(t)+ f(t, u(t),u^{(1)}(t),\cdots ,u^{(n-2)}(t))=0~~~~~\hbox {~for~}~~~~~t\in (0,1)~~~~\hbox {and}~~~~~~n\ge 2,\\ (BC)~~ \begin{cases}u^{(i)}(0)=0,~~~~~0\le i \le n-3,\\ \alpha u^{(n-2)}(0)-\beta u^{(n-1)}(0)=0,\\ \gamma u^{(n-2)}(1)+\delta u^{(n-1)}(1)=0\end{cases} \end{cases} \tag{{BVP}}\end{equation*}

has at least one solution.


References [Enhancements On Off] (What's this?)

  • [1] R. P. Agarwal and F. H. Wong, Existence of positive solutions for higher order boundary value problems, Nonlinear Studies, to appear.
  • [2] R. P. Agarwal and F. H. Wong, Existence of positive solutions for non-positive higher order BVP's, to appear in Computational and Applied Mathematics.
  • [3] R. P. Agarwal and F. H. Wong, An application of topological transervality with respect to non-positive higher order BVP's, to appear.
  • [4] V. Anuradha, D. D. Hai and R. Shivaji, Existence results for superlinear semipositive BVP's, Proc. Amer. math. Soc 124 (1996), 757-763. MR 96f:34030
  • [5] P. B. Bailey, L. F. Shampine and P. E. Waltman, Nonlinear Two-point Boundary Value Problems, Academic Press, New York, 1968. MR 37:6524
  • [6] C. Bandle and M.K. Kwong, Semilinear elliptic problems in annular domains, Z. Angew. Math. Phys. 40 (1989), 245-257. MR 90m:35062
  • [7] Y. S. Choi and G. S. Ludford, An unexpected stability result of the near-extinction diffusion flame for non-unity Lewis numbers, Q. J. Mech. Appl. Math 42 part 1 (1989), 143-158. MR 91b:80022
  • [8] C. J. Chyan and J. Henderson, Positive solutions for singular higher order nonlinear equations, Diff. Eqns. Dyn. Sys 2 (1994), 153-160. MR 97b:34017
  • [9] E. N. Dancer, On the structure of solutions of an equation in catalysis theory when a parameter is large, J. Diff. Eqns 37 (1980), 404-437. MR 82b:35018
  • [10] H. Dang and K. Schmitt, Existence of positive solutions for semiliear elliptic equations in annular domain, Diff. and Integ. Equs. 7 (1994), 747-758. MR 94m:35020
  • [11] K. Deimling, Nonlinear functional analysis, Springer, New York, 1985. MR 86j:47001
  • [12] J. Dugundji and A. Granas, Fixed point theory, Monografie Mat, PWN, Warsaw, 1982. MR 83j:54038
  • [13] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), 743-748. MR 94e:34025
  • [14] X. Garaizar, Existence of positive radial solutions for semiliear elliptic equations in the annulus, J. Differential Equations 70 (1987), 69-72. MR 89f:35019
  • [15] A. Granas, R. B. Guenther and J. W. Lee, On a theorem of S. Bernstein, Pac. Jour. Math. 73 (1977), 1-16. MR 57:10068
  • [16] A. Granas, R. B. Guenther and J. W. Lee, Nonlinear boundary value problems for some classes of ordinary differential equations, Rocky Mount. J. Math. 10 (1980), 35-58. MR 81h:34017
  • [17] J. Henderson, Singular boundary value problems for difference equations, Dynamic Systems and Applications 1 (1992), 271-282. MR 94a:39004
  • [18] P. Kelevedjiev, Existence of solutions for two-point boundary value problems, Nonlinear Analysis T. M. & A. 22 (1994), 217-224. MR 95a:34029
  • [19] P. Kelevedjiev, Nonexistence of solutions for two-point boundary value problems, Nonlinear Analysis T. M. & A. 22 (1994), 225-228. MR 95a:34030
  • [20] M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen, 1964. MR 31:6107
  • [21] J. W. Lee and D. O'Regan, Nonlinear boundary value problems in Hilbert spaces, Jour. Math. Anal. Appl. 137 (1989), 59-69. MR 90a:34048
  • [22] J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations, NSFCB Regional Conference Series in Math., vol. No. 40, Amer. Math. Soc., Providence. R. I., 1979.
  • [23] N. Vasilev and I. Klokov, Bases of the theory of boundary value problems for ordinary differential equations, Izdat ``Zinatne.'' Riga, 1978.
  • [24] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994), 1-7. MR 95c:35093
  • [25] F. H. Wong, Existence of positive solutions of singular boundary value problems, Nonlinear Analysis T.M.& A. 21 (1993), 397-406. MR 94i:34056

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34B15

Retrieve articles in all journals with MSC (1991): 34B15


Additional Information

Fu-Hsiang Wong
Affiliation: Department of Mathematics and Science, National Taipei Teacher’s College, 134, Ho-Ping E. Rd. Sec. 2, Taipei 10659, Taiwan, Republic of China
Email: wong@tea.ntptc.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-98-04709-1
Keywords: Higher order boundary value problems, solution, operator equation, Green's function, Schauder's fixed point theorem, upper-lower-solutions
Received by editor(s): January 22, 1997
Communicated by: Hal L. Smith
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society