Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniform primeness of the Jordan algebra
of symmetric operators


Authors: L. L. Stachó and B. Zalar
Journal: Proc. Amer. Math. Soc. 126 (1998), 2241-2247
MSC (1991): Primary 46L70, 15A45, 15A60, 16W10, 17C65
DOI: https://doi.org/10.1090/S0002-9939-98-04769-8
MathSciNet review: 1487342
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we establish the best possible constant for the general lower estimate for the Jacobson - McCrimmon operator on the algebra of symmetric operators acting on a Hilbert space.


References [Enhancements On Off] (What's this?)

  • 1. M. Cabrera Garcia and A. Rodriguez-Palacios, Non-degenerately ultraprime Jordan-Banach algebras: a Zelmanovian treatment, Proc. London Math. Soc. 69 (1994), 576-604. MR 95g:46094
  • 2. S. Dineen, The Schwarz Lemma, Oxford Science Publications, 1989. MR 91f:46064
  • 3. J. Faraut and A. Koranyi, Analysis on Symmetric Cones, Oxford Press, 1994. CMP 97:12
  • 4. J.M. Isidro and L.L. Stachó, Holomorphic Automorphism Groups in Banach Spaces: An Elementary Introduction, North-Holland, 1985. MR 86f:32037
  • 5. N. Jacobson, Structure and Representations of Jordan algebras, Amer. Math. Soc., 1968. MR 40:4330
  • 6. Jordan Algebras (W. Kaup, K. McCrimmon and H.P. Petersson, eds.), Walter de Gruyter, 1994. MR 95c:17002
  • 7. O. Loos, Jordan Pairs, Lecture Notes in Math., vol. 460, Springer Verlag, 1975. MR 56:3071
  • 8. O. Loos, Bounded Symmetric Domains and Jordan Pairs, University of California at Irvine, 1977.
  • 9. J.D. Malley, Statistical applications of Jordan algebras, Lecture Notes in Statistics, vol. 91, Springer-Verlag, 1994. MR 96i:62078
  • 10. M. Mathieu, More properties of the product of two derivations of a $C^{*}$-algebra, Bull. Austral. Math. Soc. 42 (1990), 115-120. MR 91k:46079
  • 11. E. Neher, Jordan Triple Systems by the Grid Approach, Lecture Notes in Math., vol. 1280, Springer Verlag, 1987. MR 89b:17024
  • 12. I. Satake, Algebraic Structures of Symmetric Domains, Iwanami Shoten, Tokyo, and Princeton Univ. Press., Princeton, NJ, 1980. MR 82i:32003
  • 13. T.A. Springer, Jordan Algebras and Algebraic Groups, Springer Verlag, 1973. MR 52:523
  • 14. L.L. Stachó and B. Zalar, On the norm of Jordan elementary operators in standard operator algebras, Publ. Math. Debrecen 49 (1996), 127-134. MR 97k:47043
  • 15. H. Upmeier, Symmetric Banach Manifolds and Jordan $C^{\ast }$-algebras, North-Holland, 1985. MR 87a:58022
  • 16. H. Upmeier, Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics, CBMS Regional Conf. Ser. Math., vol. 67, American Mathematical Society, 1987. MR 88h:17032

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46L70, 15A45, 15A60, 16W10, 17C65

Retrieve articles in all journals with MSC (1991): 46L70, 15A45, 15A60, 16W10, 17C65


Additional Information

L. L. Stachó
Affiliation: Bolyai Intézet, Aradi Vértanuk tere 1, 6720 Szeged, Hungary
Email: stacho@math.u-szeged.hu

B. Zalar
Affiliation: University of Maribor, Faculty of Civil Engineering, Department of Basic Sciences, Smetanova 17, 62000 Maribor, Slovenija
Email: borut.zalar@uni-mb.si or borut.zalar@uni-lj.si

DOI: https://doi.org/10.1090/S0002-9939-98-04769-8
Keywords: Hilbert space, bounded operators, symmetric operators, Jordan algebra, Jacobson-McCrimmon operator, prime algebra
Received by editor(s): January 19, 1996
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society