Central extensions of some Lie algebras

Authors:
Wanglai Li and Robert L. Wilson

Journal:
Proc. Amer. Math. Soc. **126** (1998), 2569-2577

MSC (1991):
Primary 17B65, 17B56; Secondary 17B66.

DOI:
https://doi.org/10.1090/S0002-9939-98-04348-2

MathSciNet review:
1451817

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider three Lie algebras: , the Lie algebra of all derivations on the algebra of formal Laurent series; the Lie algebra of all differential operators on ; and the Lie algebra of all differential operators on We prove that each of these Lie algebras has an essentially unique nontrivial central extension.

**[Bl]**R. E. Block, On the Mills-Seligman axioms for Lie algebras of classical type,*Trans. Amer. Math. Soc.***121**(1966), 378-392. MR**32:5795****[Bo]**R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster,*Proc. Natl. Acad. Sci. USA***83**(1986), 3068-3071. MR**87m:17033****[C]**H. -J. Chang, Über Wittsche Lie-Ringe,*Abh. Math. Sam. Hansischen***14**(1941), 151-184. MR**3:101A****[F]**B. L. Feigin, The Lie algebra and the cohomology of the Lie algebra of differential operators,*Usp. Math. Nauk.***43**, No. 2 (1988), 157-158. MR**90b:17024****[FKRW]**E. Frenkel, V. Kac, A. Radul, W. Wang, and with central charge ,*Commun. Math. Phys.***170**(1995), 337-357. MR**96i:17024****[FLM]**I. B. Frenkel, J. Lepowsky and A. Meurman,*Vertex Operator Algebras and the Monster*, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988. MR**90h:17026****[GF]**I. M. Gelfand, D. B. Fuchs, Cohomology of the Lie algebra of vector fields on a circle,*Funct. Anal. Appl.***2**(1968), 92-93. English translation:*Funct. Anal. Appl.***2**(1968), 342-343. MR**39:6348a****[KP]**V. Kac, D. H. Peterson, Spin and wedge representations of infinite-dimensional Lie algebras and groups.*Proc. Natl. Acad. Sci. USA***78**(1981), 3308-3312. MR**82j:17019****[KR]**V. Kac, A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle,*Commun. Math. Phys.***157**(1993), 429-457. MR**95f:81036****[L]**W. Li, 2-cocycles on the algebra of differential operators,*J. Algebra***122**(1989), 64-80. MR**90d:17018**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
17B65,
17B56,
17B66.

Retrieve articles in all journals with MSC (1991): 17B65, 17B56, 17B66.

Additional Information

**Wanglai Li**

Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Email:
wli@math.rutgers.edu

**Robert L. Wilson**

Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

Email:
rwilson@math.rutgers.edu

DOI:
https://doi.org/10.1090/S0002-9939-98-04348-2

Keywords:
Lie algebra,
central extension,
2-cocycle

Received by editor(s):
September 13, 1996

Received by editor(s) in revised form:
February 4, 1997

Additional Notes:
The second author was supported in part by NSF Grant DMS-9401851

Communicated by:
Roe Goodman

Article copyright:
© Copyright 1998
American Mathematical Society