Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Hypergroups with invariant metric

Author: Michael Voit
Journal: Proc. Amer. Math. Soc. 126 (1998), 2635-2640
MSC (1991): Primary 43A62; Secondary 20N20, 54E35
MathSciNet review: 1451835
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this note is to extend the following classical result from groups to hypergroups in the sense of C.F. Dunkl, R.I. Jewett, and R. Spector: If a hypergroup has a countable neighborhood base of its identity, then $K$ admits a left- or a right-invariant metric. Moreover, it admits an invariant metric if and only if there exists a countable conjugation-invariant neighborhood base of the identity.

References [Enhancements On Off] (What's this?)

  • 1. G. Birkhoff: A note on topological groups. Compos. Math. 3, 427 - 430 (1936).
  • 2. W.R. Bloom, H. Heyer: Harmonic Analysis of Probability Measures on Hypergroups. De Gruyter (1995). MR 96a:43001
  • 3. E. Hewitt, K.A. Ross: Abstract Harmonic Analysis I. Springer-Verlag: Berlin - New York (1979). MR 81k:43001
  • 4. R.I. Jewett: Spaces with an abstract convolution of measures. Adv. Math. 18, 1 - 101 (1975). MR 52:14840
  • 5. S. Kakutani: Über die Metrisation der topologischen Gruppen. Proc. Imp. Acad. Tokyo 12, 82 - 84 (1936).
  • 6. Hm. Zeuner: One-dimensional hypergroups. Adv. Math. 76, 1 - 18 (1989). MR 90i:43002

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A62, 20N20, 54E35

Retrieve articles in all journals with MSC (1991): 43A62, 20N20, 54E35

Additional Information

Michael Voit
Affiliation: Mathematisches Institut, Universität Tübingen, 72076 Tübingen, Germany; Department of Mathematics, University of Virginia, Kerchof Hall, Charlottesville, Virginia 22903-3199

Keywords: Hypergroups, invariant metric
Received by editor(s): December 26, 1996
Received by editor(s) in revised form: January 27, 1997
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society