THE EQUIVALENCE OF SOME BERNOULLI
CONVOLUTIONS TO LEBESGUE MEASURE

R. DANIEL MAULDIN AND KÁROLY SIMON

(Communicated by Frederick W. Gehring)

Abstract. Since the 1930’s many authors have studied the distribution \(\nu_\lambda \)
of the random series \(Y_\lambda = \sum \pm \lambda^n \) where the signs are chosen independently
with probability \((1/2, 1/2)\) and \(0 < \lambda < 1\). Solomyak recently proved that
for almost every \(\lambda \in \left[\frac{1}{2}, 1 \right] \), the distribution \(\nu_\lambda \) is absolutely continuous with
respect to Lebesgue measure. In this paper we prove that \(\nu_\lambda \) is even equivalent
to Lebesgue measure for almost all \(\lambda \in \left[\frac{1}{2}, 1 \right] \).

1. Introduction

For each \(\lambda \in (0, 1) \) we define the random variable
\[
Y_\lambda = \sum_{n=0}^{\infty} \theta_n \cdot \lambda^n,
\]
where \(\theta_n \) are independent random variables with \(\text{Prob}(\theta_n = -1) = \text{Prob}(\theta_n = 1) = \frac{1}{2} \). The distribution \(\nu_\lambda \) of \(Y_\lambda \) is sometimes called a symmetric infinite Bernoulli
convolution. One can easily see that for \(0 < \lambda < \frac{1}{2} \) the distribution \(\nu_\lambda \) is supported
on a Cantor set of zero Lebesgue measure. Since the 1930’s a lot of work has been
done to characterize \(\nu_\lambda \) for \(\frac{1}{2} < \lambda \) (for a good survey see e.g. Peres, Solomyak
(1996a) [4]). Among these results the most interesting ones are as follows: P. Erdős
(1939) [1] proved that \(\nu_\lambda \) is singular with respect to Lebesgue measure, if \(\lambda \) is
the reciprocal of a PV number. (An algebraic integer is a PV number provided
all of its conjugates are less than one in modulus.) On the other hand, Wintner
(1935) [7] proved that \(\nu_\lambda \) is absolutely continuous for \(\lambda = 2^{-\frac{k}{2}} \), for each \(k \geq 1 \),
and Garsia (1962) [3] found some other algebraic integers for which \(\nu_\lambda \) is absolutely
continuous. Moreover, Erdős (1940) [2] also proved that there exists \(a < 1 \) such
that the distribution \(\nu_\lambda \) is absolutely continuous with respect to Lebesgue measure
for (Lebesgue) a.e. \(\lambda \in (a, 1) \). Then P. Erdős asked:

Is this statement true with \(a = \frac{1}{2} \)?
This exciting problem remained open for more than fifty years. Then Solomyak (1995) [6] gave a positive answer (see also Peres, Solomyak (1996a) [4] for a shorter proof). Namely,

Theorem 1 (Solomyak).

\[\nu_\lambda \ll m \text{ for Lebesgue a.e. } \lambda \in \left(\frac{1}{2}, 1 \right), \]

where \(m \) is Lebesgue measure.

Answering a problem of the first author, posed to the Conference on Fractals and Stochastics (1994, Finsterbergen), we prove that that \(\nu_\lambda \) is even equivalent to Lebesgue measure for a.e. \(\lambda \in \left[\frac{1}{2}, 1 \right) \). Using Solomyak’s theorem, it is enough to prove that Lebesgue measure is either absolutely continuous or singular with respect to \(\nu_\lambda \) for each \(\lambda \). Actually we prove this statement for a more general family of measures. Furthermore, Peres, Solomyak (1996b) [5] proved that if the probabilities of choosing the signs + and − in \(Y_\lambda \) are \((p, 1-p)\) where \(p \in [1/3, 2/3] \), then \(\nu_\lambda \ll m \) holds for a.e. \(\lambda \in [p^2(1-p)^{1-p}, 1] \). Using this, it follows from our result that even in this non-symmetric case the distributions are not only absolutely continuous but equivalent to Lebesgue measure for a.e. \(\lambda \in [p^2(1-p)^{1-p}, 1] \). (For smaller \(\lambda \) the distributions are singular.)

We thank Yuval Peres for some useful conservations.

2. Notation

For an arbitrary \(\lambda \in (\frac{1}{2}, 1) \) we define the ‘projection’ \(\Pi_\lambda : \{-1,1\}^\mathbb{N} \to \left[-\frac{1}{2\lambda}, \frac{1}{2\lambda} \right] \) by \(\Pi_\lambda(i) = \sum_{k=0}^{\infty} i_k \lambda^k \). Let \(\mu \) be any Borel probability measure on \(\{-1,1\}^\mathbb{N} \) for which

\[\mu(B) > 0 \implies \mu\{(i, B)\} > 0 \]

holds for all \(B \subset \{-1,1\}^\mathbb{N} \) and \(i \in \{-1,1\} \), where \((i, B) := \{(i,j) \in \{-1,1\}^\mathbb{N} : j \in B\} \). For example \(\mu \) may be any Bernoulli measure on \(\{-1,1\}^\mathbb{N} \) with probabilities \((p, 1-p)\), \(0 < p < 1 \). The ‘push down measure’ of \(\mu \) is \(\alpha_{\lambda,\mu}(B) := \mu(\Pi_\lambda^{-1}(B)) \). We denote the interval \([\frac{1}{2\lambda}, \frac{1}{\lambda}]\) by \(I \). Further, we define \(S_i : I \to I \), \(S_i(x) := \lambda x + i \) for \(i = -1,1 \). The iterates of \(S_i \) are

\[S_{i_1 \ldots i_n}(x) := S_{i_1} \circ \ldots \circ S_{i_n}(x). \]

The image of \(I \) under \(S_{i_1 \ldots i_n} \) is called \(I_{i_1 \ldots i_n} \). The inverse of \(S_{i_1 \ldots i_n} \) is defined only on \(I_{i_1 \ldots i_n} \). So \(S_{i_1 \ldots i_n}^{-1}(A) := S_{i_1 \ldots i_n}^{-1}(A \cap I_{i_1 \ldots i_n}) \). Then \(S_{i_1}^{-1}(x) = \frac{1}{\lambda} x - \frac{i}{\lambda} \) for \(x \in I_i \) \((i = -1,1)\). We denote the Lebesgue measure of a set \(A \) by \(m(A) \).

3. The Theorem and Its Consequences

Theorem 2. Either \(m \ll \alpha_{\lambda,\mu} \) or \(m \perp \alpha_{\lambda,\mu} \).

If \(\mu \) is the Bernoulli measure with probabilities \((\frac{1}{2}, \frac{1}{2})\) then \(\nu_\lambda = \alpha_{\lambda,\mu} \). Using Solomyak’s Theorem, we obtain

Consequence 1. For almost all \(\lambda \in (\frac{1}{2}, 1) \), \(\nu_\lambda \) is equivalent to Lebesgue measure.

Clearly, any Bernoulli measure \(\mu \) with probabilities \((p, 1-p)\), satisfies (1) (if \(p \neq 0 \)). Thus,
Consequence 2. Let η_λ be the distribution of the random series $Z_\lambda = \sum \pm \lambda^n$, where the signs are chosen independently with probabilities $(p, 1-p)$ and $0 < \lambda < 1$. Then either $m \ll \eta_\lambda$ or $m \perp \eta_\lambda$.

Let η_λ be as above. Then η_λ is singular for all $\lambda < p^p(1-p)^{1-p}$ (see Peres, Solomyak (1996b) [5, Theorem 2 (a)]). Also Peres, Solomyak (1996b) [5, Corollary 1.4] proved that for $p \in [1/3, 2/3]$ and for almost every $\lambda \in [p^p(1-p)^{1-p}, 1]$, $\eta_\lambda \ll \mu$. Thus, using our previous consequence we obtain

Consequence 3. Let η_λ be the distribution of the random series $Z_\lambda = \sum \pm \lambda^n$, where the signs are chosen independently with probabilities $(p, 1-p)$, Then for each $p \in [1/3, 2/3]$ and for almost every $\lambda \in [p^p(1-p)^{1-p}, 1]$, the distribution η_λ is equivalent to Lebesgue measure.

4. Lemmas and Proofs

To prove Theorem 2 we need two lemmas.

Lemma 1. Let $A \subset I$. Then $\alpha_{\lambda, \mu}(A) = 0 \implies \alpha_{\lambda, \mu}(S_1^{-1}(A)) = 0$ ($i = -1,1$).

Proof. First observe that

$$\Pi_\lambda^{-1}(A) = \left\{ (-1, \Pi_\lambda^{-1}(S_1^{-1}(A))) \right\} \cup \left\{ (1, \Pi_\lambda^{-1}(S_1^{-1}(A))) \right\}. \tag{2}$$

This is so, since for $i = -1,1$

$$j \in \Pi_\lambda^{-1}(S_1^{-1}(A)) \iff \sum_{k=0}^{\infty} j_k \lambda^k \in S_1^{-1}(A) \iff \sum_{k=0}^{\infty} j_k \lambda^k \in \frac{1}{\lambda} A - \frac{i}{\lambda} \iff i + \sum_{k=0}^{\infty} j_k \lambda^{k+1} \in A \iff (i, j) \in \Pi_\lambda^{-1}(A).$$

To get a contradiction we assume that there exists a set A such that $\alpha_{\lambda, \mu}(A) = 0$ and $\alpha_{\lambda, \mu}(S_1^{-1}(A)) = \mu(\Pi_\lambda^{-1}(S_1^{-1}(A))) > 0$ holds for some $i \in \{-1,1\}$.

Then from (1), it follows that $\mu(\Pi_\lambda^{-1}(S_1^{-1}(A))) > 0$. Using (2), we find that $\mu(\Pi_\lambda^{-1}(A)) = \alpha_{\lambda, \mu}(A) > 0$. This contradiction proves our lemma. \hfill \Box

Let $C \subset I$ be an arbitrary fixed Borel set. Let $C_0 := C$ and

$$C_{-(k+1)} := (S_1^{-1}(C_k) \cup S_1^{-1}(C_{-k})).$$

Then the ‘backward orbit’ of C in I is

$$\Lambda_- := \bigcup_{k \geq 0} C_{-k}. \tag{3}$$

Lemma 2. For any $C \subset I$, the set Λ_- defined above is either a set of zero measure or a full measure subset of I with respect to Lebesgue measure.

Proof. Let $\overline{\Lambda}_- := I \setminus \Lambda_-$. Obviously, it is enough to prove the statement of Lemma 2 for the set $\overline{\Lambda}_-$ instead of Λ_-. Observe that

$$x \in \overline{\Lambda}_- \implies S_i(x) \notin \overline{\Lambda}_- \implies \exists k \geq 0 \text{ such that } S_i(x) \in C_{-k} \cap I_i.$$

Then $x = S_i^{-1}(S_i(x)) \in C_{-(k+1)} \subset \Lambda_-$. Iterate (4) to obtain

$$S_{i_1 \ldots i_n}(\overline{\Lambda}_-) \subset \overline{\Lambda}_- \tag{5}.$$
for each \(n \in \mathbb{N} \) and \((i_1, \ldots, i_n) \in \{-1, 1\}^n\). Suppose that \(m(\Lambda_-) > 0 \). Then \(d := \frac{m(\Lambda_-)}{|I|} \) is positive. Using (5), we obtain that
\[
\frac{\lambda_n}{\lambda} \geq \frac{m(\Lambda_- \cap I_{i_1} \ldots i_n)}{|I_{i_1} \ldots i_n|} \geq \lambda \cdot d \cdot |I|.
\]
Thus
\[
(6) \quad \frac{\lambda_n}{\lambda} \geq d
\]
holds for each \(i_1 \ldots i_n \).

On the other hand, let \(J \subset I \) be an arbitrary interval. Then we can find \(n \) and \(i_1 \ldots i_n \) such that \(I_{i_1} \ldots i_n \subset J \) and
\[
|I_{i_1} \ldots i_n| \geq \frac{\lambda}{3}.
\]

Now, from (6) and (7) together, it follows that
\[
\frac{\lambda_n}{\lambda} \geq d \cdot \frac{\lambda}{3}.
\]
That is, \(\Lambda_- \) has no density point. Thus \(\Lambda_- \) is a full measure subset of \(I \). This completes the proof of Lemma 2.

Proof of Theorem 2. Suppose that \(m \not\ll \alpha_{\lambda, \mu} \). Then there is a set \(C \subset I \) such that \(m(C) > 0 \) and \(\alpha_{\lambda, \mu}(C) = 0 \). Define \(\Lambda_- \) by (3). Then \(m(\Lambda_-) > 0 \); thus it follows from Lemma 2 that \(\Lambda_- \) is a full measure subset of \(I \) with respect to Lebesgue measure. On the other hand, Lemma 1 implies that \(\alpha_{\lambda, \mu}(\Lambda_-) = 0 \). So \(m \perp \alpha_{\lambda, \mu} \). This completes the proof of Theorem 2.

References

Department of Mathematics, P. O. Box 305118, University of North Texas, Denton, Texas 76203-5118

E-mail address: mauldin@dynamics.math.unt.edu

Current address, K. Simon: Institute of Mathematics, University of Miskolc, Miskolc-Egyetemvaros, H-3515 Hungary
E-mail address: matsimon@gold.uni-miskolc.hu