UNIQUENESS IN THE CAUCHY PROBLEMS FOR HIGHER ORDER ELLIPTIC DIFFERENTIAL OPERATORS

WENSHENG WANG

(Communicated by J. Marshall Ash)

Abstract. In this note, we study the uniqueness in Cauchy problems for a class of higher order elliptic differential operators with Lipschitz coefficients. In particular, we prove the uniqueness under assuming the potentials being $L^{r_j}_{\text{loc}}$ with certain correct numbers r_j’s.

Notation. Let Ω be a domain in \mathbb{R}^d. Suppose $P(x, D) = \sum_{|\alpha| = m} a_\alpha(x) D^\alpha$ is a differential operator of degree m with real functions $a_\alpha(x)$ on Ω. We denote by $P = P(x, \cdot + ik)$ the symbol of $P(x, D)$ and by $N^P(x, k)$ the zero set of $P(x, \cdot + ik)$ for any $(x, k) \in \Omega \times \mathbb{R}^d$. Let’s define a subset in $\Omega \times S^{d-1}$:

$$\Sigma_P = \{(x, k) \in \Omega \times S^{d-1} : \sum \frac{d}{dz_j} P(x, \xi + ik) \cdot k_j \neq 0, \det \text{Hess}_C P(x, \xi + ik) \neq 0 \forall \xi \in N^P_{(x, k)} \}$$

where $\text{Hess}_C P = \left(\frac{d^2 P}{dz_j dz_l} \right)$ is the complex Hessian matrix of P, and $z = \xi + ik \in C^d$.

If u is a function on Ω, we define its normal support $N(\text{supp} u)$ as a subset of $\Omega \times S^{d-1}$. Say $(x, k) \in N(\text{supp} u)$ if there is a neighborhood V of x such that $\psi(y) \leq \psi(x)$ for all $y \in V \cap \text{supp} u$ and $d\psi(x) = \pm k$, where ψ is some smooth function.

Let $s = \frac{2(d+1)}{d+3}$ be the restriction number and s' be its conjugate number. We let $W^{m, 2}_{\text{loc}}$ be the Sobolev space of functions whose derivatives up to order m belong to L^2. We have the following theorem.

Theorem. Suppose $P(x, D)$ is an elliptic differential operator with real Lipschitz functions a_α as coefficients on Ω and is of order $m < \frac{d}{2}$. If a function $u \in W^{m, 2}_{\text{loc}}(\Omega)$ satisfies

$$|Pu(x)| \leq \sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} u|$$

with $V_\mu \in L^\frac{d}{2}_{\text{loc}}(\Omega)$, then $N(\text{supp} u) \subset \Sigma_P$.

Remarks. (1) Actually we will prove that $N(\text{supp} u) \subset \Lambda_P'$ where Λ_P is the set of $(x, k) \in \Omega \times S^{d-1}$ such that $N^P_{(x, k)}$ is locally contained in a smooth hypersurface with nonzero Gaussian curvature, which is smaller than Σ_P. In other words, we

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
may replace the assumptions in Σ_P by directly assuming some curvature condition for $N_{x,k}^P$. Σ_P is a natural condition and is easy to verify. But the proof of $\Sigma_P \subset \Lambda_P$ is nontrivial which is essentially shown in Lemma 1 below. For more details, see [3].

(2) When coefficients are constants, this theorem was proved by the author in [3]. When $P(x,D)$ is hyperbolic, under some other curvature assumption for $N_{x,k}^P$, Sogge proves the same result in the case where $V_\mu = 0$ for all $\mu \leq m - 1$; see [2]. In general, if we don’t care about the optimal condition for the potentials, this is an old theorem by Calderon. See [1], [4].

Calderon’s theorem is actually equivalent to the following uniqueness theorem in the Cauchy problem.

Theorem 1. Suppose $P(x,D)$ is an elliptic differential operator with real Lipschitz functions a_α as coefficients on a domain Ω which contains $\mathbb{R}^d \setminus B(-e_d, \frac{1}{2})$ and satisfies the conditions

$$\frac{dP}{dz_d}(0, \xi + ie_d) \neq 0,$$

$$\det \text{Hess}_c P(0, \xi + ie_d) \neq 0$$

for all $\xi \in N_{(0,e_d)}^P$, where $\text{Hess}_c P$ is the complex Hessian matrix of P. Then for any function $u \in W^{m,2}_{loc}(\Omega)$ satisfying (1) for some $V_\mu \in L^\frac{2}{m}(\Omega)$, u vanishes in a neighborhood of 0 if u vanishes outside $B(-e_d, 1)$.

Let’s first prove our Theorem by assuming Theorem 1.

Proof of the Theorem. Let $(x^0, k^0) \in N(\text{suppu})$. Suppose $(x^0, k^0) \in \Sigma_P$. By the definition of $N(\text{suppu})$, there is a little ball B such that $x^0 \in \partial B$ and $u = 0$ in B. Then there is a map F which is the composition of translation, rotation, dilation and Kelvin transformation with respect to x^0 and B such that $F(x^0) = 0$ and $F(k^0) = e_d$. Moreover $u \circ F^{-1} = 0$ outside $B(-e_d, 1)$ and $u \circ F^{-1}$ is defined on a domain Ω which contains $\mathbb{R}^d \setminus B(-e_d, \frac{1}{2})$. Let $v(y) = u \circ F^{-1}(y)$. Then v satisfies the following differential inequality by (1):

$$|Q(y, D)v(y)| \leq \sum_{0 < \mu \leq m} V_\mu^1(y) |\nabla^{m-\mu} v(y)|$$

where $Q(y, \eta) = P(F^{-1}(y), (\frac{1}{2}DF^{-1}(y))^{-1} \eta)$ and $V_\mu^1(y) = V_\mu \circ F^{-1}(y)$ plus some bounded functions. So one may check that $(0, e_d) \in \Sigma_Q$ which means the assumptions in Theorem 1 are satisfied. So applying Theorem 1 to Q and v, we have $v = 0$ in a neighborhood of 0. Pull back v to u by F. We have $u = 0$ in a neighborhood of x^0. This is a contradiction with $x^0 \in \text{suppu}$.

In order to prove Theorem 1, we need several lemmas. Let’s first study the differential operator with real constants coefficients. We denote by A the vector $(a_\alpha)_{|\alpha|=m} \in \mathbb{R}^M$ for some number M determined by m and $P_A(D) = \sum_{|\alpha|=m} a_\alpha D^\alpha$, and denote by $N_{(A,k)}$ the zero set of $P_A(\cdot + ik)$. We are always interested in the case that P_A is elliptic. Let’s introduce some functions as follows:

$$S(A, \xi, k) = \sum_j \frac{dP_A}{dz_j}(\xi + ik)k_j,$$
\[H(A, \xi, k) = \left| \det \left(\frac{d^2 P_A}{dz_j dz_l} (\xi + ik) \right) \right|, \]
\[L(A, \xi, k) = \sum_{(j, t)} \left| \det \left(\frac{\partial^2 P_A}{\partial^2 z_j} (\xi + ik) \right) \right|. \]

We notice that the assumption in Theorem 1 says that when \(A = (a_\alpha(0)) \) and \(k = e_d \), the first two of the above functions are positive on \(N_{(0, e_d)}^P \). By the Cauchy-Riemann equation and the transversality theorem, we proved that \(L(A, \xi, k) \) is also positive on \(N_{(0, e_d)}^P \). See [3].

Lemma 1. Suppose for some \(A \in \mathbb{R}^M \) and \(k_0 \in S^{d-1} \) the above three functions are positive on \(N_{(A, k_0)} \). Then there are some positive numbers \(c_0, b, \epsilon, \) an integer \(J \), a neighborhood \(K \) of \(k_0 \) in \(S^{d-1} \) and finite small balls \(\{ B_j(\epsilon) \}_{j=1}^J \) such that for any \(B \in \mathbb{R}^M \) with \(\| B - A \| \leq b \) and any \(k \in K \) there are finite hypersurfaces \(\{ S_j \}_{j=1}^J \) for which the following properties hold:

1. \(N(B, k) \cap B_j(\epsilon) \subset S_j \cap B_j(\epsilon) \);
2. \(N(B, k) \subset \bigcup_{j=1}^J B_j(\frac{\epsilon}{2}) \);
3. \(S_j \cap B_j(\epsilon) \) is a piece of hypersurface with nonzero Gaussian curvature which is bounded by \(c_0 \) from below for all \(j \).

Moreover for each such \((B, k) \), there is a diffeomorphism \(G(B, k) : \bigcup_{j=1}^J B_j(\epsilon) \to D(\epsilon) \times N(B, k) \) such that \(|G'(B, k)| \) is bounded by \(c_0 \) from below.

Proof. We will prove this lemma in several steps as follows.

Step 1: There are positive constants \(c, b, \epsilon, J \) and a neighborhood \(K \) of \(k_0 \) in \(S^{d-1} \) and an \(\epsilon \) neighborhood \(U \) of \(N_{(A, k_0)} \) such that for any \(B \in \mathbb{R}^M \) with \(\| B - A \| \leq b \) and any \(k \in K \),

\[N(B, k) \subset \frac{1}{2} U, \quad \min (S(B, \xi, k), H(B, \xi, k), L(B, \xi, k)) \geq c \]

for all \(\xi \in U \).

Proof of Step 1. Since \(P_A \) is an elliptic polynomial, the set \(N_{(A, k_0)} \) is a compact boundaryless submanifold of codim 2 by assumption. Functions \(S, H \) and \(L \) are continuous in three variables \(A, \xi \) and \(k \). So by assumption and compact argument and the \(\epsilon \) neighborhood theorem, Step 1 is proved.

Step 2: There are \(\epsilon \) and finite small balls such that for any \(B \) and \(k \) as in Step 1 there are finite hypersurfaces as in Lemma 1. (1), (2) and (3) of Lemma 1 hold.

Proof of Step 2. Since \(S(A, \xi, k_0) \) and \(H(A, \xi, k_0) \) are positive functions, Proposition 0.1 of [3] implies that there are finite \(\epsilon \) balls \(\{ B_j(\epsilon) \}_{j=1}^J \) with centers \(\{ \xi_j \} \subset N_{(A, k_0)} \) such that

\[N_{(A, k_0)} \subset \bigcup_{j=1}^J B_j(\frac{\xi_j}{4}). \]

Moreover there are also finite real numbers \(t_j \) and vectors \(\{ x_j \}_{j=1}^J \subset \mathbb{R}^d \) such that if we define functions \(f_j(A, \xi, k_0) \) by

\[\text{re} P_A(\xi + ik_0) + t_j \text{im} P_A(\xi + ik) + \langle x_j, (\xi - \xi_j) \rangle (t_j \text{re} P_A(\xi + ik_0) - \text{im} P_A(\xi + ik)) \]
\[- \langle x_j, (\xi - \xi_j) \rangle (\text{re} P_A(\xi + ik_0) + t_j \text{im} P_A(\xi + ik)) \]
\[\times \frac{\langle t_j \nabla \text{re} P_A(\xi_j + ik_0) - \nabla \text{im} P_A(\xi_j + ik_0), \nabla \text{re} P_A(\xi_j + ik_0) + t_j \nabla \text{im} P_A(\xi_j + ik_0) \rangle}{\langle \nabla \text{re} P_A(\xi_j + ik_0) + t_j \nabla \text{im} P_A(\xi_j + ik_0), \nabla \text{re} P_A(\xi_j + ik_0) + t_j \nabla \text{im} P_A(\xi_j + ik_0) \rangle}, \]
then $f_j(A, k_0)\circ (0)$ is a hypersurface with Gaussian curvature bounded by $2c_0$ from below in $B_j(\epsilon)$ for some constant c_0 which depends only on A and k_0. Now let’s fix a B and a k as in Step 1. When b and K are small enough, $N_{(B, k)} \subset \bigcup_{j=1}^t B_j(\frac{\epsilon}{2})$. Choose $\eta_j \in B_j(\frac{\epsilon}{2})$ with $P_B(\eta_j + ik) = 0$. Replace A, k_0 and ξ_j by B, k and η_j in the function f_j for each j. Then once again when b and K are small enough, $f_j(B, k)\circ (0)\cap B_j(\epsilon)$ is a piece of hypersurface with Gaussian curvature bounded by c_0 from below for all j. This proves Step 2 with $S_j = f_j(B, k)\circ (0)$.

Step 3: The last part in Lemma 1 holds when ϵ is small and J is large.

Proof of Step 3. By the ϵ neighborhood theorem, when ϵ is small and J is large, there is a diffeomorphism $G_{(A, k_0)} : \bigcup B_j(2\epsilon) \to D(2\epsilon) \times N_{(A, k_0)}$ where $D(2\epsilon)$ is a 2-dimensional ball of radius 2ϵ. In fact $G_{(A, k_0)}$ may be defined by extending $N_{(B, k)}$ along the normal directions, which we may choose as $\nabla \text{re} P_A(\xi + ik_0) + t_j \nabla \text{im} P_A(\xi + ik_0)$ and $t_j \nabla \text{re} P_A(\xi + ik_0) - \nabla \text{im} P_A(\xi + ik_0) - v$ where v is the projection of $t_j \nabla \text{re} P_A(\xi + ik_0) - \nabla \text{im} P_A(\xi + ik_0)$ in the $\nabla \text{re} P_A(\xi + ik_0) + t_j \nabla \text{im} P_A(\xi + ik_0)$ direction in each $B_j(\frac{\epsilon}{2})$. Since $P_B(\xi + ik)$ are smooth in (B, ξ, k) and $L(B, \xi, k) \geq c$ by the assumption, for each B closing A and each k closing k_0, there is a diffeomorphism $G_{(B, k)} : \bigcup B_j(\epsilon) \to D(\epsilon) \times N_{(B, k)}$ such that $|G_{(B, k)}|^{\epsilon}$ is bounded by $\frac{1}{2} |G_{(A, k_0)}|$ from below. This proves Step 3.

Finally if we let c_0 be a new constant decided by Step 2 and Step 3, we prove Lemma 1.

Let Γ be the open cone such that $\Gamma \cap S^{d-1} = k$ which is as in Lemma 1. If E is a compact convex set with interior, then we define $g_E(x) = \min(T \geq 1 : x \in TE)$. Fix once and for all $t > d$, and define $|u|_{p, E} = ||g_E u||_p$. Then by the Holder inequality we have

$$(2) \quad ||u||_p \leq C||u||_{q, E}|E|^\frac{1}{p} - \frac{1}{q}$$

for any $q > p$, where C depends only on t and d.

Lemma 2. Suppose P_A is as in Lemma 1 and is of order $m < \frac{d}{r}$. Let b and Γ be as before or as in Lemma 1. Then there is a constant C_A such that for all $B \in \mathbb{R}^M$ with $|B - A| \leq b$ and any $k \in \Gamma$ and all compact convex subsets $E \subset \mathbb{R}^d$ with $|E| \geq |k|^{-d}$, we have

$$(3) \quad ||e^{k-x} \nabla^{m - \mu} f||_q \leq C_A(|k|^d |E|)^{\frac{1}{2}} ||e^{k-x} P_B(D)f||_{2, E}$$

for all $f \in W^{m,2}$ with compact support and all integers $0 < \mu \leq m$, where q_μ are the real numbers satisfying $\frac{1}{2} - \frac{1}{q_\mu} = \frac{1}{4}$. When $\mu = 0$, we have the following inequality:

$$(4) \quad ||e^{k-x} \nabla f||_2 \leq C_A(|k| |\text{diam} E|) ||e^{k-x} P_B(D)f||_{2, E}.$$

Proof. Let $a = (\frac{1}{2}, 0)$, $b = (1, 0)$, $c = (1, \frac{1}{2})$ and $d = (\frac{1}{2}, \frac{1}{4})$. Let Q be a subset of R^2 consisting of the quadrilateral $abcd$ and two sides ad and be. Let B and k with $|k| = 1$ be as in Lemma 2. So the conclusions of Lemma 1 hold for this (B, k). First let $0 < \mu \leq m$.

The inequality (3) is equivalent to

$$(5) \quad ||(m \hat{v})^\mu||_{q_\mu} \leq C_A(|k|^d |E|)^{\frac{1}{2}} ||v||_{2, E}$$

with $m(\xi) = \frac{|\xi + ik|^{m-\mu}}{P_A(\xi + ik)}$ for all $v \in \mathbb{C}^\infty$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let $U_{\frac{1}{2}} = \bigcup_{j=1}^{d} B_j(\frac{1}{2})$ and $U_{1} = \bigcup_{j=1}^{d} B_j(\epsilon)$ which are in Lemma 1. Let ϕ be a smooth cutoff function taking 1 on $U_{\frac{1}{2}}$ and 0 on $U_{\frac{1}{2}}^c$. Write $m = m_1 + m_2$ with $m_1 = m\phi$ and $m_2 = m(1 - \phi)$. By Lemma 1, the exact proof of Lemma 2.1 in [3] shows that

$$||(m_1v)^{q}||_q \leq CA||v||_{p}$$

(6)

for all $\left(\frac{1}{p}, \frac{1}{q}\right) \in Q$, where C_A is some constant which depends only on A, k_0 and d. Since $m_2(\xi) \leq (1 + |\xi|)^{-\mu}$, by the Bessel potential theory, we have

$$||(m_2v)^{q}||_q \leq CA||v||_{p}$$

(7)

for all $\left(\frac{1}{p} - \frac{1}{q}, \frac{1}{q}\right) \in Q$. Let q_μ be such that $\frac{1}{s} - \frac{1}{q_\mu} = \frac{\mu}{d}$, and let q_1^s be such that $\frac{1}{s} - \frac{1}{q_1^s} = \frac{\mu}{d}$ if $\mu \geq 2$, q_1^s is sufficiently close to s' and is bigger than s'. Then for any compact convex set $|E| \geq 1$, since $q_1^s < q_\mu$ and m_1 has compact support, we have by using (6) and (2)

$$||(m_1v)^{q_\mu}||_{q_\mu} \leq ||(m_1v)^{q_1^s}||_{q_1^s} \leq C_A||v||_{s} \leq C_A|E|^{\frac{\mu}{d} - \frac{1}{q_1^s}}||v||_{2,E}$$

(8)

which is bounded by $C_A|E|^\frac{\mu}{d}||v||_{2,E}$ since $|E| \geq 1$. Combining (8) and (7) we prove (5) and hence (3) with $|k| = 1$. After a scaling we prove Lemma 2 with $\mu \geq 1$. Finally when $\mu = 0$, the inequality (4) was already showed in [4] without using any curvature property in Lemma 1. So this proves Lemma 2.

Lemma 3. Suppose f is supported in a ball B. Let $D(a,N)$ be a fixed ball in R^d. Then there is a pairwise disjoint compact convex subset $\{E_k\}$ with $\{k_j\} \subset D(a,N)$ such that

$$||e^{k_j}x f \cdot g_{E_{k_j}}||_{1,E_{k_j}} \leq C_0^2 ||e^{k_j}x f||_{L^1(E_{k_j})},$$

(9)

$$\sum |E_{k_j}|^{-1} \geq C^{-1}N^d, \forall s \geq 1,$$

(10)

$$\text{diam } E_{k_j} \leq C_0 N^{-\frac{1}{2}},$$

(11)

E_{k_j} contains a ball of radius $(C_0 N)^{-1}$,

$$E_{k_j} \subset 2B$$

where C_0 is a universal constant depending only on d.

Proof. This is a special case of Wolff’s measure lemma in [4].

Now let’s start to prove Theorem 1. First we claim that we may assume the Lipschitz norm of $a_\alpha(x)$ is less than a small number ρ which will be chosen later. In fact let $F_1(x) = \delta^{-1} x$, $F_2(x) = (x, -x_d)$, $F_3(x) = \frac{x + e_d}{|x + e_d|}$ and $F = F_3 \circ F_2 \circ F_1$. Then if δ is small enough, the function $v = u \circ F^{-1}$ is defined on a domain which contains $R^d \setminus B(-e_d, \frac{1}{2})$ and $v = 0$ outside $B(-e_d, 1)$. Moreover v satisfies the following differential inequality:

$$|P_\delta(y, D)v(y)| \leq \sum_{0<\mu \leq m} V_\mu(y) |\nabla^{m-\mu} v(y)|$$

(12)

where $V_\mu(y)$ has the same properties as before, $P_\delta(y, D) = \sum_{|\alpha|=m} a_\alpha^\delta(y) D^\alpha$ with $a_\alpha^\delta(0) = a_\alpha(0)$ and $||a_\alpha||_{L^p} \leq \delta||a_\alpha||_{L^p}$. Let ρ be this number. On the other hand, if we let $A = (a_\alpha^\delta(0)) = (a_\alpha(0))$ and b, Γ be as in Lemma 2 or Lemma 1 with
\(k_0 = e_d \), then when \(\delta \) is small enough for any \(y \in B(0, \frac{1}{2}) \) with \(B = (a^\delta_\mu(y)) \) the inequalities (3) and (4) hold for all small \(\delta \).

Let’s assume \(0 \notin \text{supp} \eta \). Let \(S \) be the convex hull of \(\text{supp} \eta \cap \{y \in R^d : y_d \geq -\frac{1}{10}\} \) and \(\phi \) be a smooth cutoff function such that \(\phi = 0 \) when \(y_d \leq -\frac{1}{d} \), \(\chi = 1 \) in a neighborhood of \(\partial S \) and \(\sum_{0 < \mu \leq m} ||V_\mu||_{L^4_H(supp \phi)} \leq \beta \) with a small constant \(\beta \) to be chosen later. Let \(w = v \phi \). Then by (4)

\[
\tag{13}
|P_\delta(y, D)w(y)| \leq \sum_{0 < \mu \leq m} V_\mu(y) |\nabla^{m-\mu} w(y)| + \chi
\]

where \(\chi \in L^2 \) and \(\text{supp} \chi \subset A^1 \cup A_2 \); here \(A_2 = \{y \in B(-e_d, 1) : -\frac{1}{10} \geq y_d \geq -\frac{1}{d}\} \) and \(A_1 \) is a compact subset of \(S \). Let \(r \leq \frac{1}{32} \) be a fixed small number so that the cone \(\Gamma_r = \{k \in R^d : k_d > r^{-1} \sqrt{|k|^2 - k_d^2}\} \) is contained in \(\Gamma \) which is as in Lemma 2 for \(PA \). So \(r \) is independent of \(\rho \).

Lemma 4. If \(\tau > 0 \), then there is an \(L_0 \) such that if \(k \in \Gamma_r \) and \(|k| \geq L_0 \), then

\[
\tag{14}
||e^{k \cdot y} \chi \cdot g_E||_{2,E} \leq ||e^{k \cdot y} \sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w||_2
\]

for all \(E \subset B(0, \frac{1}{2}) \) with \(E \) containing a ball of radius \(\tau |k|^{-1} \).

Proof. Since \(\Gamma_r \) has conjugate cone \(\{k \in R^d : (k, k') \leq 0 \forall k' \in \Gamma_r\} \) which contains \(B(-e_d, 1) \cap \{y : y_d \leq \frac{1}{d}\} \supset A_2 \), the rest of the proof is exactly the same as the proof of Lemma 7.1 of [4]. So we are done.

Proof of Theorem 1. Let \(L \geq L_0 \) be a large number. We will apply Lemma 3 to the function

\[
f = \left(\sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w| + \rho L^{-\frac{1}{2}} |\nabla^m w| \right)^2
\]

and the ball \(B(Le_d, \frac{1}{2}rL) \) with \(a = Le_d \) and \(N = \frac{1}{2}rL \). So \(\frac{1}{2}L \leq |k_j| \leq 2L \). Let \(Y_j = E_{k_j} \cap \text{supp} \nu \), let \(y_j \) be the center of the convex set \(E_{k_j} \) and let \(B_j = (a^0_\mu(y_j)) \). So we have \(||B_j - A|| \leq b \) and the inequalities (3) and (2) in Lemma 2. Then by using Hölder’s inequality, (3), (4), and (11)

\[
||e^{k_j \cdot y} \left(\sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w| + \rho L^{-\frac{1}{2}} |\nabla^m w| \right) ||_{L^2(E_{k_j})}
\]

\[
\leq \sum_{0 < \mu \leq m} ||V_\mu||_{L^2(Y_j)} ||e^{k_j \cdot y} |||_{|\mu|, \alpha} + \rho L^{-\frac{1}{2}} ||e^{k_j \cdot y} \nabla^m w||_2
\]

\[
\leq C_A \left(\sum_{0 < \mu \leq m} \langle |k_j|^{id} E_{k_j} \rangle \frac{2}{\alpha} ||V_\mu||_{L^2(Y_j)} + \rho L^{-\frac{1}{2}} |k_j| (\text{diam} E_{k_j}) \right) ||e^{k_j \cdot y} P_{B_j}(D)w||_{2,E_{k_j}}
\]

\[
\leq 2C_A \left(\sum_{0 < \mu \leq m} (L^d |E_{k_j}|)^{\frac{2}{\alpha}} ||V_\mu||_{L^2(Y_j)} + C_0 r^{-1} \rho \right) ||e^{k_j \cdot y} P_{B_j}(D)w||_{2,E_{k_j}}.
\]
On the other hand, since a^δ is Lipschitz continuous it follows that $|a^\delta(x) - a^\delta(y)| \leq \rho \cdot |x - y| \leq \rho \text{diam}E_k \cdot \mathcal{E}_{kj} \leq C_0 r^{-1} \rho L^{-\frac{1}{2}} \mathcal{E}_{kj}$ by (11). So

$$|P_{B_j}(D)w(y)| \leq |P_S(y, D)w(y)| + C_0 r^{-1} \rho L^{-\frac{1}{2}} \mathcal{E}_{kj} |\nabla^m w|$$

and hence by (13)

$$|P_{B_j}(D)w(y)| \leq \sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w| + C_0 r^{-1} \rho L^{-\frac{1}{2}} \mathcal{E}_{kj} |\nabla^m w| + \chi.$$

Because of (14), we may ignore the term χ in the following process. Now by using (9) we have

\begin{equation}
|e^{kj} P_{B_j}(D)w(y)|_{2,E_kj} \leq 2 C_0 r^{-1} |e^{kj} \left(\sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w| + \rho L^{-\frac{1}{2}} |\nabla^m w| \right) \mathcal{E}_{kj} |w|_{2,E_kj} \leq 2 C_0^2 r^{-1} |e^{kj} \left(\sum_{0 < \mu \leq m} V_\mu |\nabla^{m-\mu} w| + \rho L^{-\frac{1}{2}} |\nabla^m w| \right) |w|_{L^2(E_kj)} |w|.
\end{equation}

So combining (15) and (16), we have

\begin{equation}
1 \leq 2 C_0^2 r^{-1} \cdot 2 C_A \left(\sum_{0 < \mu \leq m} (L_d |E_kj|)^{\frac{d}{2}} |V_\mu|_{L^2(Y_j)} |w|_{L^2(Y_j)} + C_0 r^{-1} \rho \right).
\end{equation}

Remember the constants r, C_0 and C_A are independent of ρ, i.e., δ. So after making δ and hence ρ small, (17) implies

$$\sum_{0 < \mu \leq m} (L_d |E_kj|)^{\frac{d}{2}} |V_\mu|_{L^2(Y_j)} \geq C$$

and hence

\begin{equation}
\max_{0 < \mu \leq m} \left\{ |V_\mu|_{L^2(Y_j)} \right\} \geq C (L_d |E_kj|)^{-1}
\end{equation}

for some constant C depending only on d and A. Summing up over j for (18), (10) implies that

$$\sum_{0 < \mu \leq m} |V_\mu|_{L^2(Y_j)} \geq C_0^{-1} C,$$

which is a contradiction if β is small enough. This proves Theorem 1.

\section*{ACKNOWLEDGMENTS}

I would like to thank Professor Tom Wolff for his constant encouragement while I was considering this problem. I would also like to thank the Alfred P. Sloan Foundation for a Doctoral Dissertation Fellowship, 1992-93.
REFERENCES

Department of Mathematics, Florida International University, Miami, Florida 33199

E-mail address: wangwens@zeus.fiu.edu or wangw@solix.fiu.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use