CLASS NUMBER PARITY FOR CYCLOMATIC FIELDS

KEN-ICHI YOSHINO

(Communicated by David E. Rohrlich)

Abstract. We give a simple criterion for the parity of the class number of the cyclotomic field.

1. Introduction

Let n be a positive integer such that $n \not\equiv 2 \pmod{4}$. Let h_n be the class number of the nth cyclotomic field $\mathbb{Q}(\zeta_n)$. Let h_n^- and h_n^+ be the first and second factor of the class number h_n respectively. It is well known that if n is divisible by at least four primes, then h_n^- is even (cf. [7]) and so is h_n. In this paper, we shall give a simple criterion for the parity of h_n when n is divisible by at most three primes. Let E_C be the group of cyclotomic units of $\mathbb{Q}(\zeta_n + \zeta_n^{-1})$. Let E_C^\pm denote the group of totally positive units in E_C. Let g be the number of distinct prime factors of n. Let ρ_n be the non-negative integer which is defined by $\#E_C^+/E_C^2 = 2^{\rho_n}$ or $\#E_C^+/E_C^2 = 2^{\rho_n+1}$ according as $g = 1$ or $g \geq 2$. We note that ρ_n is in fact non-negative in the case $g \geq 2$, since $|1-\zeta_n|^2 \in E_C^+ \setminus E_C^2$. Here we present a criterion for the parity of the class number h_n of the nth cyclotomic field $\mathbb{Q}(\zeta_n)$.

Theorem. Let n be a positive integer $\not\equiv 2 \pmod{4}$. Then

(i) h_n is even in the case $g \geq 4$,
(ii) h_n is even if and only if $\rho_n > 0$ in the case $g \leq 3$.

Remark 1. Since $2|h_n^+$ implies $2|h_n^-$, the parity of h_n coincides with that of h_n^-.

2. Proof of the Theorem

Put $K_n = \mathbb{Q}(\zeta_n)$ and $K_n^+ = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$. Let E_U be the group of primary units in E_C, that is, $E_U = \{\eta \in E_C : \alpha^2 \equiv \eta \pmod{4}\}$ for some integer $\alpha \in K_n^+$ (cf. [3], §59, §61). Let μ_n denote the non-negative integer defined by $\#E_U^+/E_U^2 \cap E_U/E_U^2 = 2^{\mu_n}$.

To prove the Theorem, we need the following lemmas.

Lemma 1. $|1-\zeta_n|^2 \not\in E_U$ if $g \geq 2$.

Proof. In the case where n is odd, the same argument in the proof of Lemma 2 in [11] shows that $E_U = \{\eta \in E_C : \eta^2 \equiv \eta \pmod{4}\}$, where $\tau \in G(K_n/\mathbb{Q})$ is defined by $\zeta_n^2 = \zeta_n^2$. Since $(-2 + \zeta_n + \zeta_n^{-1})^2 \equiv -2 + \zeta_n^2 + \zeta_n^{-2} \pmod{4}$, we have $-|1-\zeta_n|^2 \in E_U$. So, if $|1-\zeta_n|^2 \in E_U$, then $-1 \in E_U$, which implies that $1 \equiv -1 \pmod{4}$. This is a contradiction. Next consider the case where n is even.

Received by the editors February 12, 1997.
1991 Mathematics Subject Classification. Primary 11R29, 11R18; Secondary 11R27.
Then $4 \mid n$. Put $\eta = |1 - \zeta_n|^2$. Assume that $\eta \in E_U$. Here we note that $\eta \not\in K_n^\times$. In fact, $\eta = - (\zeta_n - \zeta_n^{-1})^2 = (\zeta_n + \zeta_n^{-1})^2$, where ζ_n and ζ_n^{-1} are primitive $2n$th roots of unity. Therefore $\eta \in K_n^\times$ implies $\zeta_n \in K_n$. This is impossible. Thus we obtain the quadratic extension $K_n^+(\sqrt{\eta})/K_n^+$. The above equation shows that $K_n^+(\sqrt{\eta}) = K_n^+(\zeta_n + \zeta_n^{-1}) = K_n^+(\zeta_n + \zeta_n^{-1})$, where a is the positive integer such that $2^n \parallel n$. Now $K_n^+ = K_n^+(\zeta_n + \zeta_n^{-1})$ and all the prime ideals in K_n^+ lying over 2 are ramified in K_n^+/K_n^+. On the other hand we have $\eta \equiv \alpha^2 (\text{mod } 4)$ for some integer α in K_n^+ by the assumption $\eta \in E_U$. Therefore the extension $K_n^+(\sqrt{\eta})/K_n^+$ is also generated by the roots of the equation $x^2 + x + (1 - \alpha^2 \eta^{-1})/4 = 0$, where $(1 - \alpha^2 \eta^{-1})/4$ is an integer in K_n^+. Thus $K_n^+(\sqrt{\eta})/K_n^+$ is unramified at 2. This is a contradiction.

\begin{lemma}
Let $a(K_n^+/K_n^+)$ be the ambiguous class number of K_n^+/K_n^+. Then h_n is even if and only if $a(K_n^+/K_n^+)$ is even.

\begin{proof}
Let X be an abelian group of order m. Let f be an involution of X, that is, f is an automorphism of X of order 2. Let $T = \{ x \in X ; f(x) = x \}$. Then if m is even, T is nontrivial. Indeed, we consider the homomorphism $\phi : X \rightarrow X$ defined by $\phi(x) = x^{-1}f(x)$. Then $T = \ker \phi$. If T is trivial, then ϕ is surjective. For any $y \in X$, there is an element x which satisfies $y = x^{-1}f(x)$. Hence $yf(y) = x^{-1}f(x)f(x^{-1}f(x)) = 1$. This shows that $f(y) = y^{-1}$ for any $y \in X$. Since m is even, an element of X of order 2 is fixed by f. This contradicts the assumption $T = \{1\}$. We can also derive a contradiction from the identity $\phi^n(x) = \phi(x)^{-1}n^{-1}2\zeta_1^{-1}= (n = 1, 2, \ldots)$. Now we denote by C_n the ideal class group of K_n. Let j be the complex conjugate mapping. Then defining the involution f of C_n by $f(C) = C^j$ for any $C \in C_n$, we have $a(K_n^+/K_n^+) = \# \{ C \in C_n; f(C) = C \}$. Suppose that h_n is even. Then using the above argument in this case, we have $a(K_n^+/K_n^+)$ is even. In fact, we denote by A the 2-part of C_n. Then A is nontrivial and $f(A) = A$. Hence $\# \{ C \in A; f(C) = C \}$ is even. Thus $a(K_n^+/K_n^+)$ is even. The converse is obvious. This completes the proof.

\begin{lemma}
Suppose that $g \leq 3$. Then h_n^+ is even if and only if $\mu_n > 0$.

\begin{proof}
In the case $g \leq 3$, it is well known that the class number h_n^+ of K_n^+ is represented by $h_n^+ = [E_n : E_C]$, where E_n is the group of units of K_n^+ (cf. Sinnott [8]). The argument of the proof of Lemma 4 in [11] can be applied to show that our assertion is valid. This completes the proof.

\begin{lemma}
$\mu_n \leq \rho_n$ for every positive integer $n \not\equiv 2 (\text{mod } 4)$.

\begin{proof}
If $g = 1$, the assertion is trivial by definition of μ_n and ρ_n. Consider the case that $g \geq 2$. Then $\mu_n \leq \rho_n + 1$ by definition. Suppose that $\mu_n = \rho_n + 1$. Then we get $E_n^\times \cap E_U = E_n^\times$, i.e., $E_n^\times \subseteq E_U$. This means $[1 - \zeta_n]^2 \in E_U$, which contradicts Lemma 1. Thus we obtain the desired assertion.

\begin{proof}[Proof of the Theorem]
The assertion (i) is obvious from Lemma 6 of [7]. As to (ii), we showed in [11] that when n is an odd prime power, h_n^- is even if and only if $\rho_n > 0$. And it is well known that h_n^+ is odd and $\rho_2 = 0$ for any $a \geq 2$. Therefore it suffices to show that the equivalence of (ii) is valid in the case $g = 2$ or 3. Let q^* be the integer defined by $\# E_n^\times / E_n^\times \cap \mathbb{Z}^* = 2q^*$, where E_n^\times is the group of totally positive units in E_n. Then, since $E_n^\times = E_n \cap N_{K_n^+/K_n^+}(K_n^\times)$ by the norm residue theorem and the product formula, it follows from the formula for the ambiguous class number
that \(a(K_n/K_n^+) = h_n^+2^{q^*-1} \). We notice here that \(q^* \geq 1 \) in this case by Satz 12 in [2], and that \(q^*-1 \leq \rho_n \). Suppose that \(h_n \) is even. Then \(a(K_n/K_n^+) \) is even by Lemma 2. Therefore \(h_n^+ \) is even or \(0 < q^*-1 \leq \rho_n \). Combining Lemma 3 with Lemma 4, we have \(\rho_n > 0 \). Conversely we suppose that \(\rho_n > 0 \). If \(\mu_n > 0 \), then \(h_n \) is even. This implies that \(a(K_n/K_n^+) \) is even and so is \(h_n \) by Lemma 2. If \(\mu_n = 0 \), then \(h_n \) is odd by Lemma 3. Then we have \(E_n/E_n^+ \cong E_C/E_C^+ \), i.e., \(q^*-1 = \rho_n \), so that \(a(K_n/K_n^+) \) is even. Thus \(h_n \) is even by Lemma 2. This completes the proof of the Theorem.

Remark 2. Since the generators of \(E_C \) are concretely given in [5], the values of \(\rho_n \) are calculated by using the \(\mathbb{F}_2 \)-ranks \(d \) of certain matrices as shown in [5], where \(\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z} \). That is, \(\rho_n = \varphi(n)/2 - d \) or \(\rho_n = \varphi(n)/2 - d - 1 \) according as \(g = 1 \) or \(g \geq 2 \), where \(\varphi \) is the Euler function and \(d \) is the 2-rank of \(E_C/E_C^+ \).

ACKNOWLEDGMENT

The author thanks the referee for valuable comments and suggestions.

REFERENCES

Department of Mathematics, Kanazawa Medical University, Uchinada, Ishikawa 920-02, Japan
E-mail address: yoshino@kanazawa-med.ac.jp

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use