ENDOMORPHISMS OF FINITE
FULL TRANSFORMATION SEMIGROUPS

BORIS M. SCHEIN AND BEIMNET TECLEZGHI

(Communicated by Ronald M. Solomon)

Abstract. We describe all endomorphisms of finite full transformation semigroups and count their number.

A full transformation semigroup T_X on a set X is the set X^X of all transformations (i.e., self-maps) $X \to X$ of X with composition of transformations as multiplication. This is an important object in semigroup theory, combinatorics, many-valued logic, etc. Various properties of T_X are known. In particular, Schreier [4] proved in 1936 that automorphisms of T_X are inner: for every automorphism α there exists a uniquely determined element $g \in G_X$ of the symmetric group G_X on X such that $\alpha(t) = gtg^{-1}$ for all $t \in T_X$. Here the juxtaposition gt stands for the composition $g \circ t$ and the composition acts from the right to the left: $g \circ t(x) = g(t(x))$ for every $x \in X$. Thus the automorphism group of T_X is naturally isomorphic to G_X.

Surprisingly, no one has considered endomorphisms of T_X. Our paper seems to be the first attempt at filling that gap. We consider the finite case only, that is, X is a finite set of cardinality n for $n \geq 0$

We introduce a few notations and terms. Endomorphisms that are not automorphisms are called proper. The kernel congruence $\ker(\varepsilon)$ of an endomorphism ε is defined by $(s, t) \in \ker(\varepsilon) \iff \varepsilon(s) = \varepsilon(t)$ for any $s, t \in T_X$. Δ_A is the identity relation on a set A. If $\varepsilon' = \varepsilon|_{G_X}$ is the restriction of ε to G_X, then $\ker(\varepsilon')$ also stands for the corresponding normal subgroup of G_X. The second projection (also called the range) of $t \in T_X$ is the set $\text{pr}_2(t) = t(X)$. In particular, $\text{pr}_2(st) \subset \text{pr}_2 s$. The rank of t is the cardinality $|\text{pr}_2(t)|$ of $\text{pr}_2(t)$.

We can assume that $X = \{1, 2, \ldots, n\}$ and write T_n instead of T_X. Analogously, G_n stands for G_X. We consider G_n as a subgroup of G_{n+1} consisting of all permutations that fix the point $n+1$. Also, A_X denotes the alternating group on X. For $n = 3$ or $n \geq 5$, A_n is the only nontrivial normal subgroup of G_n, while G_4 contains another nontrivial normal subgroup K, Klein’s four-group. For every $x \in X$, c_x denotes the constant transformation in T_X that maps all elements of X onto x. For example, $c_4 = \left(\begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 4 & 4 & 4 \end{array} \right)$ in T_4.

Our main results are the following Theorem and Corollary. Their proof is followed by a Proposition that is another corollary to our main theorem.

Received by the editors February 12, 1997.

1991 Mathematics Subject Classification. Primary 20M20; Secondary 03G25, 05A15.

©1998 American Mathematical Society
Theorem. (A) Choose a permutation g of X and define $\alpha^g(t) = gtg^{-1}$ for all $t \in T_X$. Then α^g is an automorphism of T_X.

(E) Choose $\beta, \gamma \in T_X$ such that $\beta^2 = \beta$ and $\beta \gamma = \gamma \beta = \gamma^2 = \gamma$. If

$$\varepsilon_{\beta, \gamma}(t) = \begin{cases}
\beta, & \text{for } t \in G_X \setminus A_X, \\
\beta^2, & \text{for } t \in A_X, \\
\gamma, & \text{for } t \in T_X \setminus G_X,
\end{cases}$$

then $\varepsilon_{\beta, \gamma}$ is an endomorphism of T_X.

If $\beta^2 = \beta = \gamma$, then $\varepsilon_{\beta, \gamma}$ is a constant endomorphism that maps T_X onto a trivial semigroup $\{\gamma\}$. If $\beta^2 = \beta \neq \gamma$, then $\varepsilon_{\beta, \gamma}$ is an endomorphism of rank 2 that maps T_X onto a two-element semilattice $\{\beta, \gamma\}$ with $\gamma < \beta$. If $\beta \neq \beta^2 \neq \gamma$, then $\varepsilon_{\beta, \gamma}$ is an endomorphism of rank 3 that maps T_X onto a three-element semigroup $\{\beta, \beta^2, \gamma\}$, where γ is a zero element and $\{\beta, \beta^2\}$ a two-element subgroup.

Conversely, every automorphism of T_X has the form (A) and every proper endomorphism the form (E), except that T_4 has 24 additional endomorphisms σ^g, $g \in G_4$, defined as follows:

Each of the six cosets of K in G_4 contains exactly one element of G_3. If $t \in G_4$, let $\sigma(t)$ be that (only) element of $K t \cap G_3$, and if $t \in T_4 \setminus G_4$, let $\sigma(t) = c_4$. Then $\sigma^g = \sigma^e \sigma$, that is, $\sigma^g(t) = g \sigma(t)g^{-1}$. In particular, $\sigma = \sigma^e$, where e is the identity element of G_4.

Corollary. Every proper endomorphism of T_n has rank 1, 2, or 3, except that T_4 also has additional endomorphisms of rank 7. There are

$$n! \sum_{m=1}^{n} \frac{m^{n-m}}{(n-m)!m!}$$

endomorphisms of rank 1,

$$n! \sum_{m=2}^{n} \sum_{r=1}^{m-1} \frac{m^{n-m}r^{m-r}}{(n-m)!(m-r)!r!}$$

endomorphisms of rank 2, and

$$n! \sum_{m=3}^{n} \sum_{k=1}^{\lfloor \frac{m-1}{2} \rfloor} \sum_{r=1}^{m-2k} \frac{m^{n-m}r^{m-k-r}}{2^k(n-m)!(m-2k-r)!k!r!}$$

endomorphisms of rank 3.

For $n = 4$, there are 24 endomorphisms of rank 7.

Thus T_n has

$$n! \left[1 + \sum_{m=1}^{n} \sum_{k=0}^{\lfloor \frac{m-1}{2} \rfloor} \sum_{r=1}^{m-2k} \frac{m^{n-m}r^{m-k-r}}{2^k(n-m)!(m-2k-r)!k!r!} \right]$$

endomorphisms for $n > 1, n \neq 4$ and

$$n! \left[2 + \sum_{m=1}^{n} \sum_{k=0}^{\lfloor \frac{m-1}{2} \rfloor} \sum_{r=1}^{m-2k} \frac{m^{n-m}r^{m-k-r}}{2^k(n-m)!(m-2k-r)!k!r!} \right] = 345$$

endomorphisms for $n = 4$.

In particular, the orders of T_n and $\text{End}(T_n)$ for $1 \leq n \leq 9$ are:
<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>T_n</td>
<td>= n^n$</td>
<td>1</td>
<td>4</td>
<td>27</td>
<td>312</td>
<td>4656</td>
<td>823,543</td>
<td>16,777,216</td>
</tr>
<tr>
<td>$</td>
<td>\text{End}(T_n)</td>
<td>$</td>
<td>1</td>
<td>7</td>
<td>40</td>
<td>345</td>
<td>3,226</td>
<td>38,503</td>
<td>529,614</td>
</tr>
</tbody>
</table>

Problem. Find an asymptotic estimate for $|\text{End}(T_n)|_{n \to \infty}$, where $\text{End}(T_n)$ is the semigroup of all endomorphisms of T_n. It seems that the estimate can be found by the Laplace method and arguments from [2]. Is it true that $\frac{|\text{End}(T_n)|}{|T_n|^2}$ converges monotonically to 0? It appears to be so.

Constant (that is, of rank 1) endomorphisms of T_n are in one-to-one correspondence with idempotents of T_n. Harris and Schoenfeld (see [3]) found an asymptotic estimate for the number of idempotents in T_n.

The proofs of the Theorem and Corollary follow from Lemmas 1–5.

Lemma 1. Let $G \subset T_X$ be a subgroup of T_X for a finite or infinite X. All elements $g \in G$ have the same range $Y \subset X$, and the mapping $g \mapsto \overline{g} = g_Y$, where g_Y is the restriction of g to Y, is an isomorphism of G onto a group of permutations of Y.

Proof. Here “permutation” means a bijection of Y onto itself. Lemma 1 is folklore, and we give its brief proof for completeness’ sake.

For every $g, h \in G$ there exists $x \in G$ such that $gx = h$, and hence $\text{pr}_2 h = \text{pr}_2 gx \subset \text{pr}_2 g$. Analogously, $\text{pr}_2 g \subset \text{pr}_2 h$, so that $\text{pr}_2 h = \text{pr}_2 g$.

Let e be the identity element of G. Then $\text{pr}_2 \overline{g} \subset Y = \text{pr}_2 \overline{g} = \overline{g} (\text{pr}_2 e) = g(Y) = \text{pr}_2 \overline{g}$, whence $\text{pr}_2 \overline{g} = Y$. Thus \overline{g} is a permutation of Y, and so $g \Delta_Y g = g = \Delta_Y g$. It follows that $h \overline{g} = h \Delta_Y \overline{g} = h g \Delta_Y = \overline{h g}$ and $g \mapsto \overline{g}$ is a homomorphism of G onto a group of permutations of Y. This homomorphism is an isomorphism because $\overline{\overline{g}} = \overline{e} = \overline{g^g} = \overline{gg} = \overline{e g} = eg = g \Rightarrow g = e$.

Lemma 2. Every endomorphism of T_n injective on G_n is an automorphism.

Proof. If ε is an endomorphism injective on G_n, then G_n is isomorphic to its image $G = \varepsilon(G_n)$ under ε, and so $|G| = n!$. By Lemma 1, G is isomorphic to a group of permutations of a subset $Y \subset X$, where $Y = \text{pr}_2 e$ for e the identity element of G. Thus $n! = |G| \leq |Y|!$. It follows that $Y = X$, and hence $G = G_n$.

Since $c_x g = c_x$ for all $g \in G_n$, we obtain $\varepsilon(c_x) \varepsilon(g) = \varepsilon(c_x g) = \varepsilon(c_x)$. Here $\varepsilon(g)$ may be an arbitrary element of G_n, and hence $\varepsilon(c_x) h = \varepsilon(c_x)$ for all $h \in G_n$. This is possible only if $\varepsilon(c_x)$ is a constant endomorphism, say, $\varepsilon(c_x) = c_{f(x)}$, where $f(x)$ is a suitable element of X.

Obviously, $tc_x = c_{t(x)}$ for all $t \in T_n$. Thus $c_{f(t(x))} = \varepsilon(c_{t(x)}) = \varepsilon(t c_x) = \varepsilon(t) \varepsilon(c_x) = \varepsilon(t) c_{f(x)} = c_{\varepsilon(t)(f(x))}$, so that $f(t(x)) = \varepsilon(t)(f(x))$ for all $x \in X$. Therefore, $ft = \varepsilon(t) f$ and, for $x, y \in X$ and $g \in G_X$, $f(x) = f(y) \Rightarrow f(g(x)) = \varepsilon(g)(f(x)) = \varepsilon(g)(f(y)) = f(g(y))$, and hence $f(x) = f(y) \Rightarrow f(g(x)) = f(g(y))$ for every $g \in G_n$. It follows that either $x = y$, and hence f is injective, or $f(x) = f(y)$ for all $x, y \in X$, and hence f is a constant transformation. In the latter case $f = c_a$ for some $a \in X$, and our formula $f(t(x)) = \varepsilon(t)(f(x))$ becomes $a = \varepsilon(t)(a)$ for every $t \in T_n$. Thus a is a fixed point of $\varepsilon(t)$ for every t, and hence for every $g \in G_n$, which is possible only if $X = \{a\}$. Therefore, f is injective for every finite X, and so $f, f^{-1} \in G_n$. Now the formula $ft = \varepsilon(t)f$ can be rewritten as $\varepsilon(t) = ftf^{-1}$, which shows that ε is an automorphism of T_n.

ENDOMORPHISMS OF FINITE FULL TRANSFORMATION SEMIGROUPS 2581
Recall that every ideal of T_n is of the form $I_k = \{ t \in T_n : \text{rank}(t) < k \}$ with $2 \leq k \leq n + 1$ (see [1]). Thus T_n is a disjoint union of its group of units G_n and the maximal ideal I_n.

Lemma 3. Every proper endomorphism ε of $T_n, n \neq 4$, maps G_n into elements $\alpha, \beta \in T_n$ with $\alpha = \beta^2$ and $\beta^3 = \beta$. Also, ε maps $I_n = T_n \setminus G_n$ into a single idempotent $\gamma \in T_n$ such that $\beta\gamma = \gamma\beta = \gamma$. Thus $\text{pr}_2 \varepsilon$ has cardinality 1, 2, or 3. Respectively, $\text{pr}_2 \varepsilon$ is a trivial semigroup $\{\gamma\}$, a semilattice $\{\alpha, \beta\}$ of order 2, or a two-element group $\{\alpha, \beta\}$ with zero γ adjoined.

Proof. By Lemma 2, ε is not injective on G_n, and so $\ker(\varepsilon)$ does not induce an identity congruence on G_n. It follows from the description of congruence relations on T_n (see [1]) that one of the equivalence classes of $\ker(\varepsilon)$ is either I_n or $I_n + 1$. In the latter case $I_n + 1 = T_n$, and hence ε maps T_n onto the trivial semigroup $\{\gamma\}$ for some idempotent $\gamma \in T_n$.

If $\ker(\varepsilon) = I_n$, then ε maps $I_n = T_n \setminus G_n$ into an idempotent γ. Also, $\ker(\varepsilon)$ decomposes G_n into cosets modulo a nontrivial normal subgroup N of G_n. If $n \neq 4$, then $N = G_n$ or $N = A_n$, the alternating group. In the former case ε maps G_n into an idempotent $\alpha \in T_n$, and $\varepsilon(T_n)$ is a two-element semilattice $\{\alpha, \gamma\}$ with γ as the zero element. In the latter case G_n / N is a two-element group, and hence ε maps N into an idempotent α and G_n / N into β such that $\beta^2 = \alpha$ and $\beta^3 = \alpha\beta = \beta$.

It remains to describe proper endomorphisms of T_4.

Lemma 4. All proper endomorphisms of T_4 are either endomorphisms of ranks 1, 2 or 3 described in Lemma 3 or endomorphisms ε of rank 7, where $\text{pr}_2 \varepsilon$ is isomorphic to the symmetric group G_3 with zero adjoined.

There are 24 endomorphisms σ^9 of rank 7; they correspond to 24 permutations $g \in G_4$ of the symmetric group G_4 and have the structure described in the Theorem.

Proof. The only difference with our proof of Lemma 3 is that G_4 contains another nontrivial normal subgroup $N = K$, which is Klein’s four-group. It is easy to see that the factor group G_n / K is isomorphic to G_3, the symmetric group of degree 3. Obviously, K has index 6 in G_4 and the complement I_4 of G_4 in T_4 forms a congruence class modulo $\ker(\varepsilon)$, where ε is our endomorphism. Thus the rank of ε is 7 and $\text{pr}_2 \varepsilon$ is isomorphic to G_3° (the group G_3 with zero adjoined).

The rest of the proof is based on two facts: (1) T_4 contains exactly four subsemigroups S isomorphic to G_3°, and (2) each of these four semigroups has exactly six automorphisms.

(1) We know that S is a group G with zero adjoined. Let t be that zero. Then t is an idempotent of T of rank r, where $1 \leq r \leq 4$. Also, $gt = t$ for every $g \in G$, that is, each of the r elements of $\text{pr}_2 t$ is a fixed point of each g. Applying Lemma 1 we see that G is isomorphic to a group G of permutations of a subset $Y \subset \{1, 2, 3, 4\}$, and r elements of $\text{pr}_2 t$ are fixed points of all elements $\bar{g} \in G$. Thus the elements of \bar{G} can actually permute only $|Y| - r$ points, and so $3! = |\bar{G}| \leq (|Y| - r)! \leq (4 - 1)!$. It follows that $|Y| - r = 3$, and hence $r = 1$ and $|Y| = 4$, which implies $Y = X$. Thus $t = c_x$ for some $x \in X$. Since $|G| = 6$, G is the group of all permutations of X with a fixed point x. We have four choices for x, which give us four choices for S.

(2) Assume that $x = 4$. Then elements of G actually permute only the three elements of $\{1, 2, 3\}$, and, since we identified G_3 with an appropriate subgroup of
G_4, we see that $S = G_4 \cup \{c_4\}$. Every automorphism of S leaves c_4 fixed and induces an automorphism of G_3. Since G_3 has precisely six (inner) automorphisms, S has six automorphisms too.

Now it is easy to see that all endomorphisms of rank 7 have the form $\varepsilon^g = \alpha^e \varepsilon$ for $g \in G_4$, so that $\varepsilon^g(t) = \varepsilon(t)^g = g \varepsilon(t) g^{-1}$ for every $t \in T$. Clearly, we obtain different endomorphisms for different g. If we choose $\varepsilon = \sigma^x$ as described in the Theorem, all other endomorphisms of rank 7 are $(\sigma^x)^g = \sigma^y$.

The range is determined by two elements β and γ such that $\beta^3 = \beta$ and $\beta \gamma = \gamma \beta = \gamma^2 = \gamma$. These relations between β and γ are characterized in the following lemma.

Lemma 5. Three (not necessarily distinct) transformations β, $\alpha = \beta^2$ and γ are the range of an endomorphism of T_n if and only if

(i) the restriction $\beta = \beta^Y$ of β to $Y = \text{pr}_2 \beta$ is an involution, that is, β is a permutation of Y such that $\beta^2 = \beta$;

(ii) every element x of $\text{pr} \gamma$ is a fixed point of both γ and β;

(iii) if $x \notin Y$, then $\gamma(x) = \gamma(\beta(x))$;

(iv) if (x, y) is a transposition in β, that is, $\beta(x) = y$ and $\beta(y) = x$ for $x \neq y$, then $\gamma(x) = \gamma(y)$.

Proof. Necessity. (i) It follows from $\beta^3 = \beta$ that $\{\beta, \beta^2\}$ is a two-element subgroup of T_n. By Lemma 1, $\beta = \beta^Y$ is a permutation of Y and $\beta^2 = \Delta_Y$, that is, β is an involution of Y. We do not exclude the case when $\beta = \Delta_Y$.

(ii) Let $x \in \text{pr} \gamma$. If $x = \gamma(y)$ for some $y \in X$ and $\delta \gamma = \gamma$ for $\delta \in T_n$, then $\delta(x) = \delta \gamma(y) = \gamma(y) = x$. Thus $\beta \gamma = \gamma \beta = \gamma$ implies $\gamma(x) = \beta(x) = x$.

(iii) This condition follows from $\gamma = \gamma \beta$.

(iv) If (x, y) is a transposition of β, then $\gamma(x) = \gamma(\beta(y)) = \gamma(y)$.

Sufficiency. Suppose that (i)–(iv) hold. Then (i) implies $\beta^3 = \beta^2 \beta = \Delta_Y \beta = \beta$. Since $\gamma(x) \in \text{pr} \gamma$, (ii) implies $\gamma^2(x) = \gamma(\gamma(x)) = \gamma(x)$ for all $x \in X$, that is, $\gamma^2 = \gamma$. Also by (ii), $\beta(\gamma(x)) = \gamma(x)$ for all $x \in X$, and hence $\beta \gamma = \gamma$.

It remains to prove that $\gamma \beta = \gamma$ or, equivalently, $\gamma(\beta(x)) = \gamma(x)$ for all $x \in X$. By (iv) this is so for $x \notin Y$. If $x \in Y$, then, by (i), x is either a fixed point of β (and hence of γ) or a part of a transposition (x, y) of β. In the former case $\gamma(\beta(x)) = \gamma(x)$. In the latter case, by (iv), $\gamma(\beta(x)) = \gamma(y) = \gamma(x)$. Thus $\gamma \beta = \gamma$.

Proof of the Corollary. Proper endomorphisms of T_n are in one-to-one correspondence with the pairs $\{\beta, \gamma\}$ that satisfy the conditions of Lemma 5. We count the number of these pairs in the following way.

First we classify these pairs for a given $Y = \text{pr} \beta$. If Y is an m-element subset of X, then $1 \leq m \leq n$. We will choose β with $\text{pr} \beta = Y$, then extend β to β, and then choose an appropriate γ. Then we calculate the number of choices and add these numbers for all possible choices of Y.

By Lemma 5.(i), β is a permutation of Y whose cycles are either fixed points or transpositions. Thus β is completely determined by its transpositions. If there are k transpositions, they move $2k$ elements of Y. Let Z be the set of these $2k$
elements. There are \(\binom{m}{2k} \) choices for \(Z \). Obviously, \(k \geq 0 \). By Lemma 5.(ii) and by \(\pr_2 \gamma \subset Y \), we see that \(2k < m \). Thus \(0 \leq k \leq \lfloor \frac{m-1}{2} \rfloor \), where \(\lfloor r \rfloor \) denotes the integral part of \(r \).

To calculate the number of choices for \(k \) transpositions in \(Z \), split \(Z \) into \(k \) disjoint ordered pairs of distinct elements. Each ordered pair has two components, and there are \(\binom{2k}{k} \) ways of choosing the set of \(k \) first components for these pairs. To form ordered pairs, bijectively map \(k \) first components onto \(k \) remaining elements of \(Z \). This can be done in \(k! \) ways. Therefore, there are \(\binom{2k}{k} k! \) different ways of choosing these \(k \) ordered pairs.

Each two-element subset can be turned into an ordered pair in two ways, and hence \(k \) disjoint transpositions can be turned into \(2^k \) different sets of ordered pairs. Thus there are

\[
\binom{m}{2k} \frac{(2k)!}{2^k k!} = \frac{m!}{2^k (m-2k)! k!}
\]

to choose \(\beta \) of rank \(m \).

To extend \(\beta \) to \(\beta \), we have to define \(\beta(x) \in Y \) for all \(x \in X \setminus Y \). Since \(X \setminus Y \) contains \(n-m \) elements, there are \(m^{n-m} \) ways of extending each \(\beta \). Thus, given \(Y \), there are \(m^{n-m} n! \) choices for \(\beta \). We can choose \(Y \) in \(\binom{n}{m} \) different ways. It follows that there are

\[
\binom{n}{m} \frac{m^{n-m} n!}{2^k (m-2k)! k!} = \frac{m^{n-m} n!}{2^k (n-m)! (m-2k)! k!}
\]

choices for \(\beta \) of rank \(m \).

Given \(\beta \) of rank \(m \) with \(k \) transpositions, we now choose \(\gamma \). Let \(\pr_2 \gamma = W \subset Y \), with \(W \) containing \(r \) elements. By Lemma 4.(ii), \(W \) consists of fixed points of \(\beta \). There are \(m-2k \) fixed points, so that \(1 \leq r \leq m-2k \), and there are \(\binom{m-2k}{r} \) choices for \(W \).

By Lemma 5.(ii), \(\gamma(x) = x \) for every \(x \in W \). It remains to define \(\gamma(x) \in W \) for \(x \notin W \). By Lemma 5.(iii), we need to define \(\gamma(x) \) for \(x \in Y \setminus W \) only. The set \(Y \setminus W \) contains \(m-r \) elements and includes our \(2k \) transposed elements. To define \(\gamma \) for these \(2k \) elements, by Lemma 5.(iv), we have to define \(\gamma \) only for \(k \) of these elements. It follows that we can define \(\gamma(x) \) arbitrarily only for \(m-r \) values of \(x \). Thus, given \(W \), there are \(r^{m-k-r} \) choices for \(\gamma \).

It follows that there are \(\binom{m-2k}{r} r^{m-k-r} \) choices for \(\gamma \) of rank \(r \). Varying \(r \) between \(1 \) and \(m-2k \), we obtain

\[
\sum_{r=1}^{m-2k} \frac{m^{n-m}}{2^k (n-m)! (m-2k)! k!} \sum_{r=1}^{m-2k} \binom{m-2k}{r} r^{m-k-r}
\]

choices for \(\{\beta, \gamma\} \) with \(\beta \) of rank \(m \).

It follows that the total number of proper endomorphisms of \(T_n \) is

\[
\sum_{m=1}^{n} \sum_{k=0}^{\lfloor \frac{m-1}{2} \rfloor} \sum_{r=1}^{m-2k} \frac{m^{n-m} r^{m-k-r} n!}{2^k (n-m)! (m-2k-r)! k! r!}
\]
This and part (A) prove the last two claims of the Corollary.

Endomorphisms of rank 1 are characterized by the condition \(\beta = \gamma \), that is, \(k = 0 \) and \(r = m \), which yields the first claim of the Corollary. The number of endomorphisms of rank 1 coincides with the number of idempotents of \(T_n \), and thus we recover a result of Tainiter (see [5]).

Endomorphisms of rank 2 are characterized by the condition \(\beta^2 = \beta \neq \gamma \), that is, \(k = 0 \) and \(r < m \). Thus \(m \geq 2 \), which produces the second claim of the Corollary.

Endomorphisms of rank 3 are characterized by the condition \(k \neq 0 \), which gives us the third claim of the Corollary and completes its proof. \(\square \)

Remark. The Theorem and Corollary make it possible to classify and count various special endomorphisms. For example, an endomorphism \(\varepsilon \) is called a *retraction* if it is idempotent (that is, \(\varepsilon^2 = \varepsilon \)). The image of a retraction is called a *retract*. We can easily describe retractions and retracts of \(T_n \).

Proposition. An endomorphism \(\varepsilon \) of \(T_n \) is a retraction if and only if it is one of the following:

(i) \(\varepsilon \) is an endomorphism of rank 1;

(ii) \(\varepsilon \) maps elements of \(G_n \) into the identity element \(e \) of \(G_n \), and elements of \(T_n \backslash G_n \) into any idempotent \(\gamma \) different from \(e \);

(iii) \(\varepsilon \) maps elements of the alternating group \(A_n \) into \(e \), the remaining permutations of \(G_n \backslash A_n \) into an odd permutation \(\beta \in G_n \), which is an involution (that is, \(\beta^2 = e \)) with fixed points, and \(\varepsilon \) maps elements of \(T_n \backslash G_n \) into \(\gamma \in T_n \) such that \(\gamma^2 = \beta \gamma = \gamma \beta = \gamma \).

Also, \(T_4 \) has four additional retractions. They are endomorphisms \(\sigma^g \) of rank 7 with \(g \in K \).

The number of retractions of rank 1 is \(n! \sum_{m=1}^{n} \frac{m^{n-m}}{(n-m)!m!} \). The number of retractions of rank 2 is \(n! \sum_{m=1}^{n} \frac{m^{n-m}}{(n-m)!m!} \). The number of retractions of rank 3 is

\[
\begin{align*}
n! \sum_{k=1}^{n+1} \sum_{r=1}^{n-k-2} \frac{r^{n-k-r}}{2^{2k+1}(n-4k-r-2)!(2k+1)!r!}.
\end{align*}
\]

The number of retractions of rank 7 for \(n = 4 \) is 4.

Proof. Necessity. It is clear that endomorphisms described in (i) and (ii) are retractions. If \(\varepsilon \) is an endomorphism of type (iii), then \(\beta \neq \beta^2 = e \) because \(\beta \) is odd and \(e \) even. Also, \(\gamma \neq e \) because \(\beta \gamma = \gamma \beta = \gamma \). Thus \(\varepsilon \) has rank 3. Since \(\beta \) is an odd permutation, it does not belong to \(A_n \), and hence \(\varepsilon(\beta) = \beta \). Also, \(\varepsilon(e) = e \), and \(\varepsilon(\gamma) = \gamma \) because \(\gamma \notin G_n \). Thus \(\varepsilon^2 = \varepsilon \) and \(\varepsilon \) is a retraction.

It remains to check that, if \(n = 4 \), \(\sigma^g \) are retractions for \(g \in K \). For every \(t \in I_4 \), \(\sigma^g(t) = g \sigma(t) g^{-1} = gc_4 g^{-1} = c_{g(4)} \in I_4 \), and hence \(\sigma^g(\sigma^g(t)) = \sigma^g(\sigma^g(4)) = \sigma^g(4) \).

If \(t \in G_4 \) and \(g \in K \), then \(t(g^{-1})^{-1} = gtg^{-1} \in K \), and hence \(Kt = Ktg^{-1} \). By our definition of \(\sigma \), \(\sigma(t) \in Kt \), and hence \(\sigma^g(t) = g \sigma(t) g^{-1} = gKtg^{-1} = Kt = Kt \), because \(gK = K \). It follows that \(K \sigma^g(t) = Kt \) for every \(t \in G_4 \), and so \(K \sigma^g(\sigma^g(t)) = K \sigma^g(t) \), which means that \(\sigma^g(\sigma^g(t)) = \sigma^g(t) \), because \(K \) is the kernel of the group homomorphism \(\sigma^g_{|G_4} : G_4 \to G_4 \). Thus \((\sigma^g)^2 = \sigma^g \) and \(\sigma^g \) is a retraction of \(T_4 \).

Sufficiency. Let \(\varepsilon \) be a retraction of \(T_n \). If \(\text{rank}(\varepsilon) = 1 \), then \(\varepsilon \) belongs to class (i).
Let \(\text{rank}(\varepsilon) = 2 \). By the Theorem the image of \(\varepsilon \) is \(\{\beta, \gamma\} \), where \(\beta \) and \(\gamma \) are distinct idempotents. If \(\beta \in I_n \), then \(\gamma = \beta \varepsilon \in I_n \), and hence \(\beta = \varepsilon(\varepsilon) = \varepsilon^2(\varepsilon) = \varepsilon(\varepsilon(\varepsilon)) = \varepsilon(\beta) = \gamma \), which is a contradiction. Thus \(\beta \in G_n \). The only idempotent of \(G_n \) is \(e \), and so \(\beta = e \) and \(\varepsilon \) belongs to class (ii).

Let \(\text{rank}(\varepsilon) = 3 \). By the Theorem the image of \(\varepsilon \) is \(\{\beta, \beta^2, \gamma\} \). If \(\beta \in I_n \), then \(\beta^2 \in I_n \) and we obtain a contradiction as in the case of \(\varepsilon \) of rank 2. Thus \(\beta \in G_n \), and hence \(\alpha = \beta^2 = e \) because \(\alpha \) is an idempotent element of \(G_n \). It follows that \(\beta \) is an involution in \(G_n \). By Lemma 5(ii), \(\beta \) has fixed points. If it is an even permutation, then \(\beta \in A_n \), and hence \(\varepsilon(\beta) = \beta \). Thus, for every \(t \in G_n \setminus A_n \), \(\beta = \varepsilon(t) = \varepsilon^2(t) = \varepsilon(\beta) = \alpha \), which is a contradiction. Therefore, \(\beta \) is odd, and so \(\varepsilon \) belongs to class (iii).

Let \(\text{rank}(\varepsilon) = 7 \) (and hence \(n = 4 \) and \(\varepsilon = \sigma^g \) for some \(g \in G_4 \)). For every \(t \in G_4 \), \(\sigma^g(\sigma^g(t)) = \sigma^g(t) \), which means \(g\sigma(\sigma^g(t))g^{-1} = g\sigma(t)g^{-1} \), and this implies \(\sigma(\sigma^g(t)) = \sigma(t) \). In the proof of necessity we saw that \(\sigma^2 = \sigma \), and so \(\sigma(t) = \sigma(\sigma^g(t)) = \sigma(g\sigma(t)g^{-1}) = \sigma(g)\sigma^2(t)\sigma(g^{-1}) = \sigma(g)\sigma(t)\sigma(g^{-1}) = \sigma(g\sigma^{-1}g^{-1}) \).

Thus \(\sigma(g\sigma^{-1}g^{-1}) = \sigma(g\sigma^{-1})\sigma(g^{-1}) = e \). Therefore, \(g\sigma^{-1}g^{-1} \in \ker(\sigma|_{G_4}) = K \) for all \(t \in G_4 \).

Suppose that \(g \) is a transposition \((i \ j) \). If \(t \) is a 3-cycle \((i \ j \ k) \), then

\[
(i \ j \ k) = (i \ j)(i \ j \ k)(j \ i)(i \ k \ j) = g\sigma^{-1}g^{-1}t^{-1} \in K.
\]

(recall that we apply the factors in the product \(g\sigma^{-1}g^{-1}t^{-1} \) from the right to the left).

If \(g \) is a 3-cycle \((i \ j \ k) \), choose \(t = (i \ j) \). We obtain

\[
(i \ j \ k) = (i \ j)(i \ j \ k)(j \ i)(i \ k \ j) = g\sigma^{-1}g^{-1}t^{-1} \in K.
\]

If \(g \) is a 4-cycle \((i \ j \ k \ l) \) (where \(\{i, j, k, l\} = \{1, 2, 3, 4\} \)), choose \(t = (i \ j) \). We obtain

\[
(i \ j \ k \ l) = (i \ j \ l \ k)(j \ i)(i \ k \ j)(j \ i) = g\sigma^{-1}g^{-1}t^{-1} \in K.
\]

It follows that if \(g \) is a 2-, 3-, or 4-cycle, then \(K \) contains a 3-cycle, which is not true. Thus either \(g = e \) or \(g \) is a product of two disjoint transpositions, i.e., \(g \in K \).

It is clear that the number of retractions of rank 1 is the number of idempotents of \(T_n \), and the number of retractions of rank 2 is the number of idempotents less 1 (because retractions of rank 2 are in one-to-one correspondence with idempotents \(\gamma \in I_n \)). We skip a proof that the number of retractions of rank 3 is indeed given by the formula in the Proposition. The number of retractions of rank 7 is the order of Klein’s four-group \(K \), that is, 4.

A description of all retracts of \(T_n \) easily follows from the Proposition.

REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF ARKANSAS, SCEN–307, FAYETTEVILLE, ARKANSAS 72701
E-mail address: bschein@comp.uark.edu

DIVISION OF SCIENCES, JARVIS COLLEGE, HAWKINS, TEXAS 75765
E-mail address: teclezghi@jarvis.edu