Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on sequences lying in the range
of a vector measure valued in the bidual


Authors: Begoña Marchena and Cándido Piñeiro
Journal: Proc. Amer. Math. Soc. 126 (1998), 3013-3017
MSC (1991): Primary 46G10, 47B10
DOI: https://doi.org/10.1090/S0002-9939-98-04350-0
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a Banach space. It is unknown if every subset $A$ of $X$ lying in the range of an $X^{**}$-valued measure is actually contained in the range of an $X$-valued measure. In this paper we solve this problem in the case when we consider only vector measures of bounded variation.


References [Enhancements On Off] (What's this?)

  • [AD] R. Anantharaman and J. Diestel, Sequences in the range of a vector measure, Annales Societatis Mathematicae Polonae, Serie I: Comm. Math. XXX (1991), 221-235. MR 92g:46049
  • [BD] J. Bourgain and F. Delbaen, A class of special ${\mathcal{L}}_{\infty }$-spaces, Acta Math. 145 (1980), 155-176. MR 82h:46023
  • [DU] J. Diestel and J.J. Uhl, Jr, Vector measures, Math. Surveys 15, Amer. Math. Soc, Providence, R.I, 1977. MR 56:12216
  • [G] J.C. García-Vázquez, Tensor products of vector measures and sequences in the range of a vector measure, Proc. Amer. Math. Soc. 124 (1996), 3459-3467. MR 97f:46030
  • [J] H. Jarchow, Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981. MR 83h:46008
  • [LR] J. Lindenstrauss and H.P. Rosenthal, The ${\mathcal{L}}_{p}$ spaces, Israel J. Math. 7 (1969), 325-349. MR 42:5012
  • [MR] J.S. Morrel and J.R.Retherford, P-Trivial Banach Spaces, Studia Math. XLIII(1) (1972), 1-25. MR 47:2321
  • [Pi1] C.Piñeiro, Sequences in the range of a vector measure with bounded variation, Proc. Amer. Math. Soc. 123 (1995), 3329-3334. MR 96a:46033
  • [Pi2] C. Piñeiro, On p-summable sequences in the range of a vector measure, Proc. Amer. Math. Soc. 125 (1997), 2073-2082. MR 97i:46082
  • [PR] C. Piñeiro and L. Rodriguez-Piazza, Banach spaces in which every compact lies inside the range of a measure, Proc. Amer. Math. Soc. 114 (1992), 505-517. MR 92e:46038
  • [Ps] G. Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS, vol.60, Amer. Math. Soc., Providence, R.I., 1986. MR 88a:47020
  • [SR] C.P. Steagall and J.R. Retherford, Fully nuclear and completely nuclear operators with applications to ${\mathcal{L}}_{1}$ and ${\mathcal{L}}_{\infty }$-spaces, Transac. Amer. Math. Soc. 163 (1972), 457-491. MR 54:3368

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46G10, 47B10

Retrieve articles in all journals with MSC (1991): 46G10, 47B10


Additional Information

Begoña Marchena
Affiliation: Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de Huelva, 21810 La Rábida, Huelva, Spain

Cándido Piñeiro
Affiliation: Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de Huelva, 21810 La Rábida, Huelva, Spain
Email: candido@uhu.es

DOI: https://doi.org/10.1090/S0002-9939-98-04350-0
Received by editor(s): October 14, 1996
Received by editor(s) in revised form: March 14, 1997
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society