Higher-dimensional Ahlfors-Beurling type inequalities in Clifford analysis

Author:
Mircea Martin

Journal:
Proc. Amer. Math. Soc. **126** (1998), 2863-2871

MSC (1991):
Primary 31B10, 41A20, 41A63

DOI:
https://doi.org/10.1090/S0002-9939-98-04351-2

MathSciNet review:
1451820

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A generalization to higher dimensions of a classical inequality due to Ahlfors and Buerling is proved. As a consequence, an extension of Alexander's quantitative version of Hartogs-Rosenthal Theorem is derived. Both results are stated and proved within the framework of Clifford analysis.

**[AB]**L. Ahlfors, and A. Buerling,*Conformal invariants and function theoretic null sets*, Acta Math.**83**(1950), 101-129. MR**12:171e****[A1]**H. Alexander,*Projections of polynomial hulls*, J. Funct. Anal.**13**(1973), 13-19. MR**49:3209****[A2]**H. Alexander,*On the area of the spectrum of an element of a uniform algebra*, Complex Approximation Proceedings, Quebec, July 3-8, 1978, Birkhäuser, 1980, pp. 3-12. MR**82b:32015****[AS]**S. Axler, and J. H. Shapiro,*Putnam's theorem, Alexander's spectral area estimate, and VMO*, Math. Ann.**271**(1985), 161-183. MR**87b:30053****[B]**A. Browder,*Introduction to Function Algebras*, Benjamin, New York, 1969. MR**39:7431****[BDS]**F. Brackx, R. Delanghe, and F. Sommen,*Clifford Analysis, Pitman Research Notes in Mathematics Series, 76*, 1982. MR**85j:30103****[DSS]**R. Delanghe, F. Sommen, and V. Sou\v{c}ek,*Clifford Algebra and Spinor-Valued Functions*, Kluwer Academic Publishers, 1992. MR**94d:30084****[G]**T. W. Gamelin,*Uniform Algebras*, Prentice Hall, 1969. MR**53:14137****[GM]**J. E. Gilbert and M. A. M. Murray,*Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Advanced Mathematics, 26*, Cambridge University Press, 1991. MR**93e:42027****[GK]**B. Gustafsson and D. Khavinson,*On approximation by harmonic vector fields*, Houston J. Math.**20**(1994), 75-92. MR**96h:31009****[K]**D. Khavinson,*On uniform approximation by harmonic functions*, Mich. Math. J.**34**(1987), 465-473. MR**89a:41026****[MSz]**M. Martin, and P. Szeptycki,*Sharp inequalities for convolution operators with homogeneous kernels and applications*, Indiana Univ. Math. J.**46**(1997).**[P]**M. Putinar,*Extreme hyponormal operators*, Operator Theory: Advances and Applications, 28, 1988, pp. 249-265. MR**90a:47065****[Pu]**C. R. Putnam,*An inequality for the area of hyponormal spectra*, Math. Z.**116**(1970), 323-330. MR**42:5085****[VPY]**A. L. Volberg, V. V. Peller, and D. V. Yakubovich,*A brief excursion into the theory of hyponormal operators*, Algebra i Analiz**2**(1990), 1-30. MR**91i:47034**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
31B10,
41A20,
41A63

Retrieve articles in all journals with MSC (1991): 31B10, 41A20, 41A63

Additional Information

**Mircea Martin**

Email:
mmartin@harvey.bakeru.edu

DOI:
https://doi.org/10.1090/S0002-9939-98-04351-2

Keywords:
Clifford analysis,
approximation theory

Received by editor(s):
February 18, 1997

Additional Notes:
This work was supported in part by NSF Grant DMS-9301187.

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1998
American Mathematical Society