Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 
 

 

Deforming the point spectra
of one-dimensional Dirac operators


Author: Gerald Teschl
Journal: Proc. Amer. Math. Soc. 126 (1998), 2873-2881
MSC (1991): Primary 34L40, 34L05; Secondary 34B05, 47B25
DOI: https://doi.org/10.1090/S0002-9939-98-04362-7
MathSciNet review: 1451831
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide a method of inserting and removing any finite number of prescribed eigenvalues into spectral gaps of a given one-dimensional Dirac operator. This is done in such a way that the original and deformed operators are unitarily equivalent when restricted to the complement of the subspace spanned by the newly inserted eigenvalue. Moreover, the unitary transformation operator which links the original operator to its deformed version is explicitly determined.


References [Enhancements On Off] (What's this?)

  • 1. B. Baumgartner, Level comparison theorems, Ann. Phys. (N.Y.) 168, 484-526 (1986).MR 87g:81046
  • 2. P. A. Deift, Applications of a commutation formula, Duke Math. J. 45, 267-310 (1978).MR 81g:47001
  • 3. P. Deift and E. Trubowitz, Inverse scattering on the line, Commun. Pure Appl. Math. 32, 121-251 (1979).MR 80e:34011
  • 4. F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1990.MR 21:6372c
  • 5. I. M. Gel'fand and B. M. Levitan, On the determination of a differential equation from its spectral function, Amer. Math. Soc. Transl. Ser 2, 1, 253-304 (1955).MR 17:489c
  • 6. F. Gesztesy, A complete spectral characterization of the double commutation method, J. Funct. Anal. 117, 401-446 (1993). MR 94m:47093
  • 7. F. Gesztesy and R. Svirsky, (m)KdV-Solitons on the background of quasi-periodic finite-gap solutions, Memoirs Amer. Math. Soc. 118, (1995).MR 96c:35162
  • 8. F. Gesztesy and G. Teschl, On the double commutation method, Proc. Amer. Math. Soc. 124, 1831-1840 (1996).MR 96h:34171
  • 9. F. Gesztesy, B. Simon, and G. Teschl, Spectral deformations of one-dimensional Schrödinger operators, J. d'Analyse Math. 70, (1996), 267-324. CMP 97:11
  • 10. B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer Academic Publishers, Dordrecht 1991.MR 92i:34119
  • 11. R. R. del Rio Castillo, Embedded eigenvalues of Sturm Liouville operators, Commun. Math. Phys. 142, 421-431 (1991). MR 92h:47067
  • 12. B. Thaller, The Dirac Equation , Springer, Berlin, 1991. MR 94k:81056
  • 13. J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer, Berlin 1987. MR 89b:47070
  • 14. J. Weidmann, Ozillationsmethoden für Systeme gewönlicher Differentialgleichungen, Math. Z. 119, 349-337 (1971).MR 44:2975

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34L40, 34L05, 34B05, 47B25

Retrieve articles in all journals with MSC (1991): 34L40, 34L05, 34B05, 47B25


Additional Information

Gerald Teschl
Affiliation: Institut für Reine und Angewandte Mathematik, RWTH Aachen, 52056 Aachen, Germany
Address at time of publication: Institut für Mathematik, Strudlhofgasse 4, 1090 Wien, Austria
Email: gerald@mat.univie.ac.at

DOI: https://doi.org/10.1090/S0002-9939-98-04362-7
Keywords: Spectral theory, Dirac operators, eigenvalues
Received by editor(s): February 18, 1997
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 by the author

American Mathematical Society