THE FUNDAMENTAL GROUP
OF A COMPACT METRIC SPACE

JANUSZ PAWLIKOWSKI
(Communicated by Andreas R. Blass)

Abstract. We give a forcing free proof of a conjecture of Mycielski that the fundamental group of a connected locally connected compact metric space is either finitely generated or has the power of the continuum.

Shelah [S], using models, absoluteness and Cohen’s forcing method, gives a proof of the following conjecture of Mycielski.

Theorem. Suppose that X is a compact metric space, which is connected and locally connected. Then the fundamental group of X is either finitely generated or has the power of the continuum.

Thus in particular the group of rationals can’t be the fundamental group of a connected locally connected compact metric space.

We can’t drop ‘compact’ in the theorem — any countably generated group can be realized as the fundamental group of a Polish space, see [Sp]. We also can’t drop ‘locally connected’ — the fundamental group of the ‘tail of the peacock’ is free with a countable infinity of generators. It seems to be open, however, whether a finitely generated group can be realized as the fundamental group of a compact metric space.

We present a forcing free proof of Mycielski’s conjecture.

Definitions. Let X be a metric space. A path from x_0 to x_1 inside $V \subseteq X$ is a continuous function $f : [0,1] \to V$ with $f(0) = x_0$ and $f(1) = x_1$. f is a loop at x if $f(0) = f(1) = x$. The reversal of f, denoted by f^{-1}, is a path from $f(1)$ to $f(0)$ defined by $f^{-1}(t) = f(1-t)$. The diameter of f is the diameter of the set $\{f(t) : t \in [0,1]\}$.

A path f is homotopic to another path g, $f \sim g$, if there is a homotopy from f to g, i.e., a continuous function $F : [0,1] \times [0,1] \to X$ such that $F(t,0) = f(t)$, $F(t,1) = g(t)$, $F(0,s) = f(0) = g(0)$ and $F(1,s) = f(1) = g(1)$ (thus endpoints are kept constant; this is usually called ‘a homotopy relative to $\{0,1\}$’). If f is a path from x_0 to x_1 and g a path from x_1 to x_2, then $f \ast g$ is the concatenation of f and g, i.e., a path from x_0 to x_2 defined by $(f \ast g)(t) = f(2t)$ for $t \in [0,1/2]$ and $(f \ast g)(t) = g(2t-1)$ for $t \in [1/2,1]$.

Received by the editors August 17, 1996 and, in revised form, February 26, 1997.

1991 Mathematics Subject Classification. Primary 03E15, 55Q05; Secondary 04A20, 55Q52.

Key words and phrases. Baire category, fundamental group, perfect set.

The author was partially supported by KBN grant 2 P03A 011 09. The author thanks J. Mycielski for introducing him to [S].

©1998 American Mathematical Society
Suppose that the fundamental group of \(M \) is not finitely generated. Then there exists \(x \in X \) such that for each \(n \in \mathbb{N} \) there exists a loop \(f_n \) at \(x \) which is of diameter \(< 2^{-n} \) and which is not homotopic to the constant loop at \(x \).

Proof. Suppose otherwise. Then for each \(x \in X \) there exists \(n(x) \in \mathbb{N} \) such that every loop at \(x \) which has diameter \(< 2^{-n(x)} \) is homotopic to the constant loop at \(x \). By compactness there exists a cover of \(X \) by path connected sets \(V_i \) \((i < k)\) and there exist points \(x_i \in V_i \) \((i < k)\) such that for every \(i \) the diameter of \(V_i \) is \(< 2^{-(n(x_i)+1)} \) and any loop at \(x_i \) which has diameter \(< 2^{-(n(x_i))} \) is homotopic to the constant loop at \(x_i \).

Fix a path \(g_i \) from \(x_0 \) to \(x_1 \) \((i < k)\); \(g_0 = \) the constant loop at \(x_0 \). For \(i \) and \(j \) such that \(V_i \cap V_j \neq \emptyset \) fix a path \(h_{ij} \) in \(V_i \cup V_j \) going from \(x_i \) to \(x_j \). Note that any path \(s \) from \(x_i \) to \(x_j \) which is contained in \(V_i \cup V_j \) is homotopic to \(h_{ij} \). Indeed, suppose that \(n(x_i) \leq n(x_j) \). Then \(s \cdot h_{ij}^{-1} \) is a loop at \(x_i \) and has diameter \(< 2^{-(n(x_i))} \), so \(s \cdot h_{ij}^{-1} \) is homotopic to the constant loop at \(x_i \). An elementary manipulation of this homotopy gives a homotopy from \(s \) to \(h_{ij} \). If \(n(x_i) > n(x_j) \), consider \(h_{ij}^{-1} \cdot s \), a loop at \(x_j \).

We shall show that the fundamental group of \(X \) is generated by the (homotopy classes of) loops \(h_{ij} \). To this end, suppose that a loop \(s \) at \(x_0 \) is given. By a change of scale \(s \sim s_{01} \cdots s_{1l} \), where each \(s_i \) is a path inside one piece of our cover. Say \(s_i \) goes from \(y_i \) to \(y_{i+1} \) inside \(V_{\phi(i)} \); \(y_0 = y_{l+1} = x_0, \phi(0) = \phi(l) = 0 \). For \(i = 0, \ldots, l \) fix inside \(V_{\phi(i)} \) a path \(t_i \) from \(y_{i+1} \) to \(x_{\phi(i)} \); \(t_0 = s_0^{-1}, t_l = \) the constant loop at \(x_0 \). Let \(\tilde{s}_i = t_i^{-1} \cdot s_i \cdot t_i \) \((i = 1, \ldots, l)\). Clearly
\[
\tilde{s}_1 \cdots \tilde{s}_l \sim s.
\]
Also, each \(\tilde{s}_i \), being a path from \(x_{\phi(i-1)} \) to \(x_{\phi(i)} \) inside \(V_{\phi(i-1)} \cup V_{\phi(i)} \), must be homotopic to \(h_{\phi(i-1)\phi(i)} \). Thus
\[
s \sim h_{\phi(0)\phi(1)} \cdots h_{\phi(l-1)\phi(l)}.
\]
and hence also
\[
s \sim \tilde{h}_{\phi(0)\phi(1)} \cdots \tilde{h}_{\phi(l-1)\phi(l)}. \quad \square
\]
For the sequel suppose that the fundamental group of X is not finitely generated and let x and f_n ($n \in \mathbb{N}$) be as claimed by Lemma 1. We shall find a set of size of the continuum of mutually non-homotopic loops. For $\alpha \in \{0, 1\}^\mathbb{N}$ let $f_n^\alpha = \text{the constant loop at } x$ if $\alpha(n) = 0$, and let $f_n^\alpha = f_n$ otherwise. Define a loop f_n at x as $(f_0^\alpha * f_1^\alpha * \cdots)$. Write $\alpha \approx \beta$ if $f_\alpha \sim f_\beta$. Then \approx is an equivalence relation in $\{0, 1\}^\mathbb{N}$. It is enough to prove that \approx has continuum many equivalence classes.

Lemma 2. Suppose that α and β from $\{0, 1\}^\mathbb{N}$ differ exactly at one point. Then $\alpha \not\approx \beta$.

Proof. Suppose that $f_\alpha \sim f_\beta$. Let n be the unique point at which α and β are different. Then, for $m \neq n$ we have $f_m^\alpha = f_m^\beta$, hence $(f_0^\alpha * \cdots * f_{n-1}^\alpha) = (f_0^\beta * \cdots * f_{n-1}^\beta)$ and $(f_{n+1}^\alpha * \cdots) = (f_{n+1}^\beta * \cdots)$. Thus from

$$
(f_0^\alpha * \cdots * f_{n-1}^\alpha * f_n^\alpha * f_{n+1}^\alpha * \cdots) \sim (f_0^\beta * \cdots * f_{n-1}^\beta * f_n^\beta * f_{n+1}^\beta * \cdots),
$$

we get $f_n^\alpha \sim f_n^\beta$, which is a contradiction.

More definitions. We recall some basic facts about Polish spaces (see [K]). A Polish space is a completely metrizable separable space. Let Y be a Polish space. For a subset A of Y: A is nowhere dense if its closure has empty interior, A is meager if it is a countable union of nowheredense sets, A is comeager in an open set U if $U \setminus A$ is meager, A has the Baire property if its symmetric difference with some open set is meager. A nonmeager set with the Baire property is comeager in some nonempty open set. The Baire category theorem implies that a set which is comeager in a nonempty open set is nonmeager. The Kuratowski-Ulam theorem implies that if $A \subseteq Y \times Z$ is comeager in $U \times V$, where U and V are open subsets of Polish spaces Y and Z, then

$$
\{y \in U : \{z \in V : (y, z) \in A\} \text{ is comeager in } V\}
$$

is comeager in U.

A subset A of Y is analytic if there exist a Polish space Z and a closed set $D \subseteq Y \times Z$ such that A is the projection of D into Y. Analytic sets have the Baire property. Continuous preimages of analytic sets are analytic.

A subset P of Y is perfect if it is closed, nonempty, and has no isolated points. Perfect sets have the power of the continuum.

The set $\{0, 1\}^\mathbb{N}$ becomes a Polish space (homeomorphic to the Cantor discontinuum) when viewed as the product of countably many copies of the two-point discrete space $\{0, 1\}$. The canonical basis of $\{0, 1\}^\mathbb{N}$ is the collection of all sets $[\sigma] = \{\alpha : \sigma \subseteq \alpha\}$, where σ is a finite zero-one sequence, i.e., $\sigma : \{0, 1, \ldots, n-1\} \mapsto \{0, 1\}$ for some n.

Lemma 3. \approx has the Baire property as a subset of $\{0, 1\}^\mathbb{N} \times \{0, 1\}^\mathbb{N}$.

Proof. Let H and \mathbb{H} be respectively the spaces of all loops at x and all homotopies between them, endowed with the sup metric. Both spaces are Polish. The homotopy relation \sim restricted to H is an analytic subset of $H \times H$. Indeed, it is the projection onto $H \times H$ of

$$
\{((f, g), F) : F \text{ is a homotopy from } f \text{ to } g\},
$$
which is a closed subset of $(H \times H) \times \mathbb{H}$. Note also that the function from $\{0,1\}^N$ to H which takes α to f_α is continuous. It follows that \approx is analytic (as a continuous preimage of an analytic set), and thus has the Baire property. \hfill \qed

Lemma 4. If $E \subseteq \{0,1\}^N \times \{0,1\}^N$ is an equivalence relation which has the Baire property and if $\neg xEy$ whenever x and y differ by one coordinate only, then E is meager.

Proof. Should E be nonmeager, it would be comeager in some basic neighbourhood $[\sigma] \times [\tau]$. By the Kuratowski-Ulam theorem,

$$A = \{ \alpha \in [\sigma] : \{ \beta \in [\tau] : \alpha E \beta \} \text{ is comeager in } [\tau] \}$$

is comeager in $[\sigma]$. Let n be the length of σ. Consider a map $\Phi : [\sigma] \rightarrow [\sigma]$ defined by $\Phi(\alpha)(n) = 1 - \alpha(n)$ and $\Phi(\alpha)(i) = \alpha(i)$ for $i \neq n$. Φ is a homeomorphism and thus $\Phi[A]$ is comeager in $[\sigma]$. Choose $\alpha \in A \cap \Phi[A]$ and let $\gamma = \Phi(\alpha)$. Then α and γ differ only at n, hence $\neg \alpha E \gamma$. Also, by the definition of A, we have in $[\tau]$ comeagerly many β with $\alpha E \beta$. As $\gamma \in A$, the same is true about γ. Thus there exists β with $\alpha E \beta$ and $\gamma E \beta$. But then $\alpha E \gamma$, which is a contradiction. \hfill \qed

Remark. Another way to see that E is meager might be as follows. Suppose for contradiction that E is nonmeager. Consider $G = \{0,1\}^N \times \{0,1\}^N$ as a Polish group with coordinatewise addition mod 2. By the Baire category version of a theorem of Steinhaus (see [O]), if $B \subseteq G$ has the Baire property and is nonmeager, then the difference set $B - B = \{ b_0 - b_1 : b_0, b_1 \in B \}$ contains a neighborhood of the unit element $(0,0)$ (here $0 = (0,0,\ldots)$). So, for each $\langle \delta, \epsilon \rangle \in G$, which is close enough to $(0,0)$, there exist $\langle \alpha, \beta \rangle \in B$ such that $\langle \alpha + \gamma, \beta + \delta \rangle \in B$. For $n \in \mathbb{N}$ let $\epsilon_n \in \{0,1\}^N$ be the function that takes value 1 at n and 0 elsewhere. Then $\langle \epsilon_n, 0 \rangle \rightarrow (0,0)$ when $n \rightarrow \infty$. So, for large enough n there exists $\langle \alpha, \beta \rangle \in B$ with $\langle \alpha + \epsilon_n, \beta \rangle \in B$. Applied to $B = E$ this yields that for large enough n there exist α and β such that $\alpha E \beta$ and $\alpha + \epsilon_n E \beta$, whence $\alpha E \alpha + \epsilon_n$. This contradicts Lemma 2.

Similar arguments show that if E is Lebesgue measurable then it must be null.

Corollary. \approx is meager.

Recall now the following theorem of Mycielski [M].

Theorem (Mycielski). Suppose that Y is a Polish space without isolated points and that $R \subseteq Y \times Y$ is meager. Then there exists a perfect set $P \subseteq Y$ such that if α and β are distinct points of P then $\langle \alpha, \beta \rangle \notin R$.

Applying this theorem to \approx and $\{0,1\}^N$ we get a perfect set of mutually \approx non-equivalent elements of $\{0,1\}^N$. The proof of Mycielski’s conjecture is complete.

A slight modification of the above proof gives the following theorem.

Theorem. Let $\kappa < 2^{2^{n_0}}$ be an infinite cardinal number. Suppose that X is a path connected locally path connected metric space which is κ-Lindelöf (i.e., every open cover of X has a subcover of size $\leq \kappa$). Then the power of the fundamental group of X is either $\leq \kappa$ or 2^{κ_0}.

References

Department of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

E-mail address: pawlikow@math.uni.wroc.pl