A result on the Gelfand-Kirillov dimension

of representations of classical groups

Author:
Chen-bo Zhu

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3125-3130

MSC (1991):
Primary 22E46, 22E47

DOI:
https://doi.org/10.1090/S0002-9939-98-04418-9

MathSciNet review:
1452837

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the reductive dual pair . We show that if is a representation of (respectively ) obtained from duality correspondence with some representation of (respectively ), then its Gelfand-Kirillov dimension is less than or equal to

(respectively ).

**[A]**J. Adams,*The theta correspondence over*, Preprint, Workshop at the University of Maryland (1994).**[BK]**W. Borho and H. Kraft,*Uber die Gelfand-Kirillov-dimension*, Math. Ann.**220**(1976), 1-24. MR**54:367****[H1]**R. Howe,*Remarks on classical invariant theory*, Trans. Amer. Math. Soc.**313**(1989), 539-570. MR**90h:22015a****[H2]**-,*-series and invariant theory*, Proceedings of Symposia in Pure Mathematics**33**(1979), 275-285. MR**81f:22034****[H3]**-,*Transcending classical invariant theory*, J. Amer. Math. Soc.**2**(1989), 535-552. MR**90k:22016****[H4]**-,*Dual pairs in physics: Harmonic oscillators, photons, electrons, and singletons*, Lectures in Appl. Math., Vol. 21, Amer. Math. Soc., Providence, R.I. (1985), 179- 206. MR**86:22036****[H5]**-,*duality for stable reductive dual pairs*, preprint.**[KL]**G.R. Krause and T.H. Lenegan,*Growth of algebras and Gelfand-Kirillov dimension*, Research Notes in Mathematics, V 116, Pitman Publishing Inc., 1985. MR**86g:16001****[L1]**J.S. Li,*On the singular rank of a representation*, Proc. Amer. Math. Soc.**106 (2)**(1989), 567-571. MR**89k:22029****[L2]**-,*Singular unitary representations of classical groups*, Invent. Math.**97**(1989), 237-255. MR**90h:22021****[LZ1]**S.T. Lee and C.B. Zhu,*Degenerate principal series and local theta correspondence*, to appear in the Trans. Amer. Math. Soc. CMP**97:11****[LZ2]**-,*Degenerate principal series and local theta correspondence II*, Israel J. Math.**100**(1997), 29-59. CMP**97:11****[TZ]**E.C. Tan and C.B. Zhu,*Poincare series of holomorphic representations*, Indag. Mathem.**N.S. 7 (1)**(1996), 111-126.**[V]**D. Vogan,*Gelfand-Kirillov dimension for Harish-Chandra modules*, Invent. Math.**48**(1978), 75-98. MR**58:22205****[W]**H. Weyl,*The classical groups*, Princeton University Press, Princeton, New Jersey, 1946.**[ZH]**C.B. Zhu and J.S. Huang,*On certain small representations of indefinite orthogonal groups*, Representation Theory**1**(1997), 190-206. CMP**97:14**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
22E46,
22E47

Retrieve articles in all journals with MSC (1991): 22E46, 22E47

Additional Information

**Chen-bo Zhu**

Affiliation:
Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260

Email:
matzhucb@leonis.nus.sg.edu

DOI:
https://doi.org/10.1090/S0002-9939-98-04418-9

Keywords:
Classical groups,
duality correspondence,
Gelfand-Kirillov dimension

Received by editor(s):
November 4, 1996

Received by editor(s) in revised form:
February 27, 1997

Communicated by:
Roe Goodman

Article copyright:
© Copyright 1998
American Mathematical Society