A note on harmonic forms on complete manifolds

Author:
Luen-fai Tam

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3097-3108

MSC (1991):
Primary 58E20

MathSciNet review:
1459152

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we will prove that under certain conditions, the space of polynomial growth harmonic functions and harmonic forms with a fixed growth rate on manifolds which are asymptotically nonnegatively curved is finite dimensional. This is a partial generalization of the works of Li and Colding-Minicozzi. We will also give an explicit estimate for the dimension in case the manifold is a complete surface of finite total curvature. This is a generalization to harmonic forms of the work of Li and the author.

**[B-C]**Richard L. Bishop and Richard J. Crittenden,*Geometry of manifolds*, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR**0169148****[Cg-Y]**S. Y. Cheng and S. T. Yau,*Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math.**28**(1975), no. 3, 333–354. MR**0385749****[C-M 1]**Tobias H. Colding and William P. Minicozzi II,*On function theory on spaces with a lower Ricci curvature bound*, Math. Res. Lett.**3**(1996), no. 2, 241–246. MR**1386843**, 10.4310/MRL.1996.v3.n2.a9**[C-M 2]**T. Colding and W. Minicozzi,*Harmonic functions with polynomial growth*, preprint.**[C-M 3]**T. Colding and W. Minicozzi,*Large scale behavior of kernels of Schrödinger operators*, preprint.**[C-M 4]**Tobias H. Colding and William P. Minicozzi II,*Generalized Liouville properties of manifolds*, Math. Res. Lett.**3**(1996), no. 6, 723–729. MR**1426530**, 10.4310/MRL.1996.v3.n6.a1**[C-M 5]**T. Colding and W. Minicozzi,*Harmonic functions on manifolds*, preprint.**[C-M 6]**T. Colding and W. Minicozzi,*Liouville theorems for harmonic sections and applications manifolds*, preprint.**[C-M 7]**T. Colding and W. Minicozzi,*Weyl type bounds for harmonic functions*, preprint.**[G]**A. Grigor'yan,*The heat equation on noncompact Riemannian manifolds*, Math. USSR Sbornik.**72**(1992), 47-77.**[Ha]**Philip Hartman,*Geodesic parallel coordinates in the large*, Amer. J. Math.**86**(1964), 705–727. MR**0173222****[Hu]**Alfred Huber,*On subharmonic functions and differential geometry in the large*, Comment. Math. Helv.**32**(1957), 13–72. MR**0094452****[L 1]**P. Li,*Polynomial growth harmonic sections*, to appear in Math. Res. Letters.**[L 2]**P. Li,*Curvature and function theory of Riemannian manifolds*, preprint.**[L-S]**Peter Li and Richard Schoen,*𝐿^{𝑝} and mean value properties of subharmonic functions on Riemannian manifolds*, Acta Math.**153**(1984), no. 3-4, 279–301. MR**766266**, 10.1007/BF02392380**[L-T 1]**Peter Li and Luen-Fai Tam,*Linear growth harmonic functions on a complete manifold*, J. Differential Geom.**29**(1989), no. 2, 421–425. MR**982183****[L-T 2]**Peter Li and Luen-Fai Tam,*Complete surfaces with finite total curvature*, J. Differential Geom.**33**(1991), no. 1, 139–168. MR**1085138****[L-T 3]**Peter Li and Luen-Fai Tam,*The heat equation and harmonic maps of complete manifolds*, Invent. Math.**105**(1991), no. 1, 1–46. MR**1109619**, 10.1007/BF01232256**[L-T 4]**Peter Li and Luen-Fai Tam,*Harmonic functions and the structure of complete manifolds*, J. Differential Geom.**35**(1992), no. 2, 359–383. MR**1158340****[L-T 5]**Peter Li and Luen-Fai Tam,*Green’s functions, harmonic functions, and volume comparison*, J. Differential Geom.**41**(1995), no. 2, 277–318. MR**1331970****[SC]**L. Saloff-Coste,*A note on Poincaré, Sobolev, and Harnack inequalities*, Internat. Math. Res. Notices**2**(1992), 27–38. MR**1150597**, 10.1155/S1073792892000047**[W]**Jiaping Wang,*Linear growth harmonic functions on complete manifolds*, Comm. Anal. Geom.**3**(1995), no. 3-4, 683–698. MR**1371213**, 10.4310/CAG.1995.v3.n4.a5**[Y]**Shing Tung Yau,*Harmonic functions on complete Riemannian manifolds*, Comm. Pure Appl. Math.**28**(1975), 201–228. MR**0431040**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58E20

Retrieve articles in all journals with MSC (1991): 58E20

Additional Information

**Luen-fai Tam**

Affiliation:
Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Email:
lftam@math.cuhk.edu.hk

DOI:
https://doi.org/10.1090/S0002-9939-98-04474-8

Received by editor(s):
February 19, 1997

Additional Notes:
Research partially supported an Earmarked grant of Hong Kong.

Communicated by:
Peter Li

Article copyright:
© Copyright 1998
American Mathematical Society