Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Note on the topological degree
of the subdifferential
of a lower semi-continuous convex function


Authors: Sergiu Aizicovici and Yuqing Chen
Journal: Proc. Amer. Math. Soc. 126 (1998), 2905-2908
MSC (1991): Primary 47H10, 47H15; Secondary 55M25
DOI: https://doi.org/10.1090/S0002-9939-98-04529-8
MathSciNet review: 1468179
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of the present paper is to prove that the topological degree of the subdifferential of a coercive lower semi-continuous function on a sufficiently large ball in a reflexive Banach space is equal to one.


References [Enhancements On Off] (What's this?)

  • 1. H. Amann, A note on degree theory for gradient mappings, Proc. Amer. Math. Soc., 85(1982),591-595. MR 83i:47069
  • 2. H. Attouch, Variational Convergence for Functions and Operators, Pitman,Boston,1984. MR 86f:49002
  • 3. J. Berkovits and V. Mustonen, On the degree for mappings of monotone type, Nonlinear Anal., 12(1986),1373-1383. MR 88b:47073
  • 4. F.E.Browder, Fixed point theory and nonlinear problems, Bull.Amer.Math. Soc., 1(1983),1-39. MR 84h:58027
  • 5. F.E.Browder, Degree theory for nonlinear mappings, Proc. Symp.Pure Math., Vol.45,pp.203-226, Amer.Math.Soc., Providence,R.I., 1986. MR 87g:47108
  • 6. Y.Q. Chen and S. S. Zhang, Degree theory for multivalued (S) type mappings and fixed point theorems, Applied Math.Mech., English Ed., 11(1990),441-454. MR 91h:47065
  • 7. M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations,Macmillan, New York,1964. MR 28:2414
  • 8. L. Nirenberg, Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc., 4(1981),267-302. MR 83e:58015
  • 9. P. H. Rabinowitz, A note on topological degree for potential operators, J. Math. Anal. Appl., 51(1975),483-492. MR 57:10518
  • 10. E. H. Rothe, A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors, Math. Nachr., 4(1950-51), 12-17. MR 12:720c
  • 11. J. C. Scovel, A simple intuitive proof of a theorem in degree theory for gradient mappings, Proc. Amer. Math. Soc., 93(1985), 751-753. MR 86g:55001
  • 12. S. L. Trojansky, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math., 37(1971), 173-180.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 47H10, 47H15, 55M25

Retrieve articles in all journals with MSC (1991): 47H10, 47H15, 55M25


Additional Information

Sergiu Aizicovici
Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701-2979
Email: aizicovi@bing.math.ohiou.edu

Yuqing Chen
Affiliation: Department of Mathematics, Ohio University, Athens, Ohio 45701-2979
Email: yuqchen@bing.math.ohiou.edu

DOI: https://doi.org/10.1090/S0002-9939-98-04529-8
Keywords: Monotone operator, class $(S_+)$, topological degree
Received by editor(s): February 25, 1997
Communicated by: Palle E. T. Jorgensen
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society