Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Unique decomposition of Riemannian manifolds


Authors: J.-H. Eschenburg and E. Heintze
Journal: Proc. Amer. Math. Soc. 126 (1998), 3075-3078
MSC (1991): Primary 53C20; Secondary 53C12
DOI: https://doi.org/10.1090/S0002-9939-98-04630-9
MathSciNet review: 1473665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove an extension of de Rham's decomposition theorem to the non-simply connected case.


References [Enhancements On Off] (What's this?)

  • [dR] G. de Rham: Sur la réductibilité d'un espace de Riemann, Comm. Math. Helv. 26 (1952), 328 - 344 MR 14:584a
  • [G] M. Gromov: Almost flat manifolds, J. Diff. Geom. 13 (1978), 231 - 241 MR 80h:53041
  • [KN] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry, vol. 1, Interscience, Wiley, New York 1963 MR 27:2945
  • [M] R. Maltz: The de Rham product decomposition, J. Diff. Geom. 7 (1972), 161 - 174 MR 48:2930
  • [P] R. Pantilie: A simple proof of the de Rham decomposition theorem, Bull. Math. Soc. Sc. Math. Roumanie 36 (84) (1992), 341 - 343 MR 95m:53068
  • [T] H. Takagi: Notes on the cancellation of Riemannian manifolds, Tôhoku Math. J. 32 (1980), 411 - 417 MR 82g:53048
  • [U] K. Uesu: Cancellation law for Riemannian direct products, J. Math. Soc. Japan 36 (1984), 53 - 62 MR 85c:53072

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53C20, 53C12

Retrieve articles in all journals with MSC (1991): 53C20, 53C12


Additional Information

J.-H. Eschenburg
Affiliation: Institut fur Mathematik, Universität Augsburg, D-86135 Augsburg, Germany
Email: eschenburg@math.uni-augsburg.de

E. Heintze
Affiliation: Institut fur Mathematik, Universität Augsburg, D-86135 Augsburg, Germany
Email: heintze@math.uni-augsburg.de

DOI: https://doi.org/10.1090/S0002-9939-98-04630-9
Keywords: Riemannian products, indecomposable Riemannian manifolds, irreducible Riemannian manifolds, de Rham's theorem
Received by editor(s): February 28, 1997
Communicated by: Christopher Croke
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society