Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark about $\Lambda (p)$-sets and Rosenthal sets


Author: Daniel Li
Journal: Proc. Amer. Math. Soc. 126 (1998), 3329-3333
MSC (1991): Primary 43A46
DOI: https://doi.org/10.1090/S0002-9939-98-04455-4
MathSciNet review: 1459133
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: There exist $\Lambda (p)$-sets which are not Rosenthal sets.

Résumé. Il existe des ensembles $\Lambda (p)$ qui ne sont pas des ensembles de Rosenthal.


References [Enhancements On Off] (What's this?)

  • 1. R. Blei, On trigonometric series associated with separable, translation invariant subspaces of $L^{\infty }(G).$, Trans. Amer. Math. Soc. 173 (1972), 491-499. MR 47:2269
  • 2. J. R. Blum - R. Cogburn, On ergodic sequences of measures, Proc. Amer. Math. Soc. 51 (1975), 359-365. MR 51:8736
  • 3. J. Blum - B. Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423-429. MR 48:8749
  • 4. J. R. Blum - B. Eisenberg - L.-S. Hahn, Ergodic theory and the measure of sets in the Bohr group, Acta Sci. Math. Szeged 34 (1973), 17-24. MR 51:10536
  • 5. M. Boshernitzan, Homogeneously Distributed Sequences and Poincaré Sequences of Integers of Sublacunary Growth, Monat. Math. 96 (1983), 173-181. MR 85k:11034
  • 6. J. Bourgain, Ruzsa's problem on sets of recurrence, Israël J. Math. 59 (1987), 150-166. MR 89d:11012
  • 7. J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israël J. Math 61 (1988), 39-72. MR 89f:28037a
  • 8. J. Bourgain - V. Milman, Dichotomie du cotype pour les espaces invariants, CRAS Paris, Série I, 300 (1985) 263-266. MR 86i:43010
  • 9. J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math n$^{\circ }$92, Springer (1984). MR 85i:46020
  • 10. J. Diestel - J.J. Uhl Jr., Vector Measures, Math. Surveys n$^{\circ }$15. MR 56:12216
  • 11. R.E. Dressler - L. Pigno, Rosenthal sets and Riesz sets, Duke Math. J. 41 (1974), 675-677. MR 58:23352
  • 12. Y. Katznelson, Sequences of integers dense in the Bohr group, Proc. Royal Inst. Techn. Stockholm (1973), 79-86.
  • 13. Y. Katznelson, Suites aléatoires d'entiers., Lecture Notes in Math 336, Springer-Verlag Berlin (1973) 148-152. MR 53:1176
  • 14. L. Kuipers - H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience, New-York, 1974. MR 54:7415
  • 15. F. Lust-Piquard, Propriétés géométriques des sous-espaces invariants par translation de $L^{1}(G)$ et ${\mathcal{C}}(G).$, Sémin. Géom. Espaces Banach. Exposé n$^{\circ }$26 (1977-78). Ecole Polytechnique. MR 80h:46024
  • 16. F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans $L^{\infty }(\Gamma ).$, Studia Math. 69 (1981), 191-225. MR 84h:43003
  • 17. F. Lust-Piquard, Bohr local properties of ${\mathcal{C}}_{\Lambda }(\mathbb T).$, Colloq. Math. 58 (1989), 29-38. MR 91c:43009
  • 18. Y. Meyer, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), 87-99. MR 37:3281
  • 19. H.P. Rosenthal, On trigonometric Series associated with $weak^{\ast }$ closed subspaces of continuous functions, Journ. Math. Mech. 17 (1967), 485-490. MR 35:7064
  • 20. W. Rudin, Trigonometric Series with Gaps., Journal of Math. and Mech. 9 (1960), 203-227. MR 22:6972
  • 21. I. Singer, Bases in Banach Spaces I., Springer Verlag Berlin-Heidelberg-New-York (1970). MR 45:7451

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 43A46

Retrieve articles in all journals with MSC (1991): 43A46


Additional Information

Daniel Li
Affiliation: Analyse Harmonique, Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay, France; Equipe d’Analyse, Université Paris VI, 4 Place Jussieu, Boîte 186, 75252 Paris cedex 05, France
Address at time of publication: Université d’Artois, Faculté Jean Perrin, rue Jean Souvraz, SP 18, 62307 Lens Cedex, France
Email: daniel.li@math.u-psud.fr, li@poincare.univ-artois.fr

DOI: https://doi.org/10.1090/S0002-9939-98-04455-4
Keywords: $\Lambda (p)$-set, Rosenthal set, homogeneously distributed sequence
Received by editor(s): January 20, 1997
Received by editor(s) in revised form: April 1, 1997
Communicated by: J. Marshall Ash
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society