Newton's formula for
Author:
Tôru Umeda
Journal:
Proc. Amer. Math. Soc. 126 (1998), 31693175
MSC (1991):
Primary 17B35, 15A33
MathSciNet review:
1468206
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper presents an explicit relation between the two sets which are wellknown generators of the center of the universal enveloping algebra of the Lie algebra : one by Capelli (1890) and the other by Gelfand (1950). Our formula is motivated to give an exact analogy for the classical Newton's formula connecting the elementary symmetric functions and the power sum symmetric functions. The formula itself can be deduced from a more general result on Yangians obtained by Nazarov. Our proof is elementary and has an advantage in its direct accessibility.
 [Ca]
A. Capelli, Sur les opérations dans la théorie des formes algébriques, Math. Ann. 37 (1890), 137.
 [Ge]
I.
M. Gel′fand, The center of an infinitesimal group ring,
Mat. Sbornik N.S. 26(68) (1950), 103–112 (Russian).
MR
0033831 (11,498a)
 [GKLLRT]
Israel
M. Gelfand, Daniel
Krob, Alain
Lascoux, Bernard
Leclerc, Vladimir
S. Retakh, and JeanYves
Thibon, Noncommutative symmetric functions, Adv. Math.
112 (1995), no. 2, 218–348. MR 1327096
(96e:05175), http://dx.doi.org/10.1006/aima.1995.1032
 [H]
Roger
Howe, Erratum to: “Remarks on
classical invariant theory”, Trans. Amer.
Math. Soc. 318 (1990), no. 2, 823. MR 1019521
(90h:22015b), http://dx.doi.org/10.1090/S00029947199010195214
 [HU]
Roger
Howe and Tōru
Umeda, The Capelli identity, the double commutant theorem, and
multiplicityfree actions, Math. Ann. 290 (1991),
no. 3, 565–619. MR 1116239
(92j:17004), http://dx.doi.org/10.1007/BF01459261
 [I]
M. Itoh, Master's thesis at Kyoto University, 1997 Feb..
 [MNO]
A.
Molev, M.
Nazarov, and G.
Ol′shanskiĭ, Yangians and classical Lie algebras,
Uspekhi Mat. Nauk 51 (1996), no. 2(308), 27–104
(Russian); English transl., Russian Math. Surveys 51
(1996), no. 2, 205–282. MR 1401535
(97f:17019), http://dx.doi.org/10.1070/RM1996v051n02ABEH002772
 [Na]
M.
L. Nazarov, Quantum Berezinian and the classical Capelli
identity, Lett. Math. Phys. 21 (1991), no. 2,
123–131. MR 1093523
(92b:17020), http://dx.doi.org/10.1007/BF00401646
 [NaTa]
Maxim
Nazarov and Vitaly
Tarasov, Yangians and Gel′fandZetlin bases, Publ. Res.
Inst. Math. Sci. 30 (1994), no. 3, 459–478. MR 1299525
(96m:17033), http://dx.doi.org/10.2977/prims/1195165907
 [Ne]
E. Netto, Vorlesungen über Algebra, Leibzig, 1896.
 [N]
I. Newton, Arithmetica universalis (Lugd, ed.), 1707.
 [NUW]
Masatoshi
Noumi, Tōru
Umeda, and Masato
Wakayama, A quantum analogue of the Capelli identity and an
elementary differential calculus on
𝐺𝐿_{𝑞}(𝑛), Duke Math. J.
76 (1994), no. 2, 567–594. MR 1302325
(95h:17019), http://dx.doi.org/10.1215/S0012709494076205
 [O]
H. Ochiai, HarishChandra isomorphism for , private notes (1996).
 [PP1]
A.
M. Perelomov and V.
S. Popov, Casimir operators for 𝑈(𝑛) and
𝑆𝑈(𝑛), Soviet J. Nuclear Phys.
3 (1966), 676–680. MR 0205620
(34 #5446)
 [PP2]
A.
M. Perelomov and V.
S. Popov, Casimir operators for the orthogonal and symplectic
groups, Soviet J. Nuclear Phys. 3 (1966),
819–824. MR 0205621
(34 #5447)
 [W]
H. Weyl, The Classical Groups, their Invariants and Representations, Princeton Univ. Press, 1946.
 [Z]
D.
P. Želobenko, Compact Lie groups and their
representations, American Mathematical Society, Providence, R.I.,
1973. Translated from the Russian by Israel Program for Scientific
Translations; Translations of Mathematical Monographs, Vol. 40. MR 0473098
(57 #12776b)
 [Ca]
 A. Capelli, Sur les opérations dans la théorie des formes algébriques, Math. Ann. 37 (1890), 137.
 [Ge]
 I.M. Gelfand, Center of the infinitesimal groups, Mat. Sb. Nov. Ser. 26 (68) (1950), 103112; English transl. in ``Collected Papers" Vol. II, pp.2230. MR 11:498a
 [GKLLRT]
 I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh and J.Y. Thibon, Noncommutaive symmetric functions, Adv. Math. 112 (1995), 218348. MR 96e:05175
 [H]
 R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539570; Erratum, Trans. Amer. Math. Soc. 318 (1990), 823. MR 90h:22015b
 [HU]
 R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and multiplicityfree actions, Math. Ann. 290 (1991), 565619. MR 92j:17004
 [I]
 M. Itoh, Master's thesis at Kyoto University, 1997 Feb..
 [MNO]
 A. Molev, M. Nazarov and G. Olshanskii, Yangians and classical Lie algebras, Russian Math. Surveys 51 (1996), 27104. MR 97f:17019
 [Na]
 M. Nazarov, Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys. 21 (1991), 123131. MR 92b:17020
 [NaTa]
 M. Nazarov and V. Tarasov, Yangians and Gel'fandZetlin bases, Publ. RIMS, Kyoto Univ. 30 (1994), 459478. MR 96m:17033
 [Ne]
 E. Netto, Vorlesungen über Algebra, Leibzig, 1896.
 [N]
 I. Newton, Arithmetica universalis (Lugd, ed.), 1707.
 [NUW]
 M. Noumi, T. Umeda and M. Wakayama, A quantum analogue of the Capelli identity and an elementary differential calculas on , Duke Math. J. 76 (1994), 567594. MR 95h:17019
 [O]
 H. Ochiai, HarishChandra isomorphism for , private notes (1996).
 [PP1]
 A.M. Perelomov and V.S. Popov, Casimir operators for and , Soviet J. Nuclear Phys. 3 (1966), 676680. MR 34:5446
 [PP2]
 , Casimir operators for the orthogonal and symplectic groups, Soviet J. Nuclear Phys. 3 (1966), 819824. MR 34:5447
 [W]
 H. Weyl, The Classical Groups, their Invariants and Representations, Princeton Univ. Press, 1946.
 [Z]
 D.P. \v{Z}elobenko, Compact Lie Groups and their Representations, Transl. Math. Monographs 40 (Amer. Math. Soc.), 1973. MR 57:12776b
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
17B35,
15A33
Retrieve articles in all journals
with MSC (1991):
17B35,
15A33
Additional Information
Tôru Umeda
Affiliation:
Department of Mathematics, Kyoto University, Kyoto 606, Japan
Email:
umeda@kusm.kyotou.ac.jp
DOI:
http://dx.doi.org/10.1090/S0002993998045572
PII:
S 00029939(98)045572
Keywords:
Center of universal enveloping algebra,
Newton's formula,
HamiltonCayley theorem
Received by editor(s):
March 28, 1997
Dedicated:
Dedicated to Professor Reiji Takahashi on the occasion of his seventieth birthday
Communicated by:
Roe Goodman
Article copyright:
© Copyright 1998 American Mathematical Society
