Newton's formula for

Author:
Tôru Umeda

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3169-3175

MSC (1991):
Primary 17B35, 15A33

MathSciNet review:
1468206

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper presents an explicit relation between the two sets which are well-known generators of the center of the universal enveloping algebra of the Lie algebra : one by Capelli (1890) and the other by Gelfand (1950). Our formula is motivated to give an exact analogy for the classical Newton's formula connecting the elementary symmetric functions and the power sum symmetric functions. The formula itself can be deduced from a more general result on Yangians obtained by Nazarov. Our proof is elementary and has an advantage in its direct accessibility.

**[Ca]**A. Capelli,*Sur les opérations dans la théorie des formes algébriques*, Math. Ann.**37**(1890), 1-37.**[Ge]**I. M. Gel′fand,*The center of an infinitesimal group ring*, Mat. Sbornik N.S.**26(68)**(1950), 103–112 (Russian). MR**0033831****[GKLLRT]**Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves Thibon,*Noncommutative symmetric functions*, Adv. Math.**112**(1995), no. 2, 218–348. MR**1327096**, 10.1006/aima.1995.1032**[H]**Roger Howe,*Erratum to: “Remarks on classical invariant theory”*, Trans. Amer. Math. Soc.**318**(1990), no. 2, 823. MR**1019521**, 10.1090/S0002-9947-1990-1019521-4**[HU]**Roger Howe and Tōru Umeda,*The Capelli identity, the double commutant theorem, and multiplicity-free actions*, Math. Ann.**290**(1991), no. 3, 565–619. MR**1116239**, 10.1007/BF01459261**[I]**M. Itoh,*Master's thesis at Kyoto University*, 1997 Feb..**[MNO]**A. Molev, M. Nazarov, and G. Ol′shanskiĭ,*Yangians and classical Lie algebras*, Uspekhi Mat. Nauk**51**(1996), no. 2(308), 27–104 (Russian); English transl., Russian Math. Surveys**51**(1996), no. 2, 205–282. MR**1401535**, 10.1070/RM1996v051n02ABEH002772**[Na]**M. L. Nazarov,*Quantum Berezinian and the classical Capelli identity*, Lett. Math. Phys.**21**(1991), no. 2, 123–131. MR**1093523**, 10.1007/BF00401646**[NaTa]**Maxim Nazarov and Vitaly Tarasov,*Yangians and Gel′fand-Zetlin bases*, Publ. Res. Inst. Math. Sci.**30**(1994), no. 3, 459–478. MR**1299525**, 10.2977/prims/1195165907**[Ne]**E. Netto,*Vorlesungen über Algebra*, Leibzig, 1896.**[N]**I. Newton,*Arithmetica universalis*(Lugd, ed.), 1707.**[NUW]**Masatoshi Noumi, Tōru Umeda, and Masato Wakayama,*A quantum analogue of the Capelli identity and an elementary differential calculus on 𝐺𝐿_{𝑞}(𝑛)*, Duke Math. J.**76**(1994), no. 2, 567–594. MR**1302325**, 10.1215/S0012-7094-94-07620-5**[O]**H. Ochiai,*Harish-Chandra isomorphism for*, private notes (1996).**[PP1]**A. M. Perelomov and V. S. Popov,*Casimir operators for 𝑈(𝑛) and 𝑆𝑈(𝑛)*, Soviet J. Nuclear Phys.**3**(1966), 676–680. MR**0205620****[PP2]**A. M. Perelomov and V. S. Popov,*Casimir operators for the orthogonal and symplectic groups*, Soviet J. Nuclear Phys.**3**(1966), 819–824. MR**0205621****[W]**H. Weyl,*The Classical Groups, their Invariants and Representations*, Princeton Univ. Press, 1946.**[Z]**D. P. Želobenko,*Compact Lie groups and their representations*, American Mathematical Society, Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Translations; Translations of Mathematical Monographs, Vol. 40. MR**0473098**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
17B35,
15A33

Retrieve articles in all journals with MSC (1991): 17B35, 15A33

Additional Information

**Tôru Umeda**

Affiliation:
Department of Mathematics, Kyoto University, Kyoto 606, Japan

Email:
umeda@kusm.kyoto-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-98-04557-2

Keywords:
Center of universal enveloping algebra,
Newton's formula,
Hamilton-Cayley theorem

Received by editor(s):
March 28, 1997

Dedicated:
Dedicated to Professor Reiji Takahashi on the occasion of his seventieth birthday

Communicated by:
Roe Goodman

Article copyright:
© Copyright 1998
American Mathematical Society