Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On component groups of $J_0(N)$
and degeneracy maps


Author: San Ling
Journal: Proc. Amer. Math. Soc. 126 (1998), 3201-3210
MSC (1991): Primary 11G18, 14H40
DOI: https://doi.org/10.1090/S0002-9939-98-04592-4
MathSciNet review: 1469421
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For an integer $M>1$ and a prime $p \geq 5$ not dividing $M$, we study the kernel of the degeneracy map $\Phi _{Mp,p}^r \rightarrow \Phi _{Mp^r, p}$, where $\Phi _{Mp,p}$ and $\Phi _{Mp^r, p}$ are the component groups of $J_0(Mp)$ and $J_0(Mp^r)$, respectively. This is then used to determine the kernel of the degeneracy map $J_0(Mp)^2 \rightarrow J_0(Mp^2)$ when $J_0(M) =0$. We also compute the group structure of $\Phi _{Mp^2, p}$ in some cases.


References [Enhancements On Off] (What's this?)

  • 1. P. DELIGNE, M. RAPOPORT, Les schémas de modules de courbes elliptiques, in ``Modular Functions of One Variable II'', Lecture Notes in Math. 349, 1973, pp. 143-316. MR 49:2762
  • 2. B. EDIXHOVEN, L'action de l'algèbre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est ``Eisenstein''. Astérisque 196-197 (1991), 159-170. MR 92k:11059
  • 3. B. EDIXHOVEN, Minimal resolution and stable reduction of $X_0(N)$. Ann. Inst. Fourier 40 (1990), 31-67. MR 92f:11080
  • 4. N. KATZ, Galois properties of torsion points on abelian varieties. Invent. Math. 62 (1981), 481-502. MR 82d:14025
  • 5. N. KATZ, B. MAZUR, ``Arithmetic Moduli of Elliptic Curves''. Annals of Mathematics Studies, Study 108, 1985. MR 86i:11024
  • 6. S. LING, Congruences between cusp forms and the geometry of Jacobians of modular curves. Math. Ann. 295 (1993), 111-133. MR 94a:11063
  • 7. S. LING, Shimura subgroups and degeneracy maps. J. Number Theory 54 (1995), 39-59. MR 96h:11058
  • 8. S. LING, On the Q-rational cuspidal subgroup and the component group of $J_0(p^r)$. Israel J. Math. 99 (1997), 29-54. CMP 97:11
  • 9. S. LING, J. OESTERLÉ, The Shimura subgroup of $J_0(N)$. Astérisque 196-197 (1991), 171-203. MR 93b:14038
  • 10. D.J. LORENZINI, Torsion points on the modular Jacobian $J_0 (N)$. Comp. Math. 96 (1995), 149-172. MR 96b:11076
  • 11. B. MAZUR, Modular curves and the Eisenstein ideal. Publ. Math. I.H.E.S. 47 (1978), 33-186. MR 80c:14015
  • 12. M. RAYNAUD, Jacobienne des courbes modulaires et opérateurs de Hecke. Astérisque 196-197 (1991), 9-25. MR 93b:11077
  • 13. K. RIBET, Congruence relations between modular forms, in ``Proceedings, International Congress of Mathematicians,'', pp. 503-514, PWN, Warsaw, 1984. MR 87c:11045
  • 14. K. RIBET, On modular representations of Gal$({\overline{\bf Q}}/{\bf Q})$ arising from modular forms. Invent. Math. 100 (1990), 431-476. MR 91g:11066
  • 15. K. RIBET, On the component groups and the Shimura subgroup of $J_0(N)$, in ``Séminaire de théorie des nombres de Bordeaux,'' 1987-88, exposé 6. MR 91b:11070

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 11G18, 14H40

Retrieve articles in all journals with MSC (1991): 11G18, 14H40


Additional Information

San Ling
Email: matlings@nus.edu.sg

DOI: https://doi.org/10.1090/S0002-9939-98-04592-4
Keywords: Modular curves, Jacobians, component groups, degeneracy maps
Received by editor(s): April 7, 1997
Additional Notes: It is a pleasure to thank Bas Edixhoven for patiently correcting the author’s initial erroneous understanding of some concepts and for the content of §2.1.
Communicated by: David E. Rohrlich
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society