TRIANGULAR EXTENSION SPECTRUM
OF WEIGHTED SHIFTS

ZHIDONG PAN

(Communicated by Palle E. T. Jorgensen)

Abstract. A necessary and sufficient condition for a complex number to be
in the triangular extension spectrum of a weighted backward shift is obtained.
It is shown that the triangular extension spectrum of a weighted backward
shift is always a closed annulus when it is not empty. Moreover, for any given
closed annulus, there exists a weighted backward shift with the annulus as its
triangular extension spectrum.

A bounded operator T acting on a separable Hilbert space H is called triangular
if there exists an orthonormal basis $\{e_n\}_{1}^{\infty}$ for H such that Te_n is in the span of
$\{e_1, e_2, \ldots, e_n\}$ for each n. A vector x is called an algebraic vector
for an operator T if there exists a nonzero polynomial $p(z)$ such that
$p(T)x = 0$. Let \mathcal{E}_T be the set of algebraic vectors for an operator T. It can be shown that T is triangular
if and only if \mathcal{E}_T is dense in H. T is called algebraic if there exists a nonzero
polynomial $p(z)$ so that $p(T) = 0$. An operator A is called semitriangular if A is
an extension of a triangular operator by a finite rank operator, or equivalently,
the norm closure of the set of algebraic vectors has finite codimension in H. The
finite codimension is called the index of semitriangularity of A. Semitriangular
operators have been proved to be very useful in constructing counter-examples.
Several longstanding open questions were answered negatively in [W], which led to
the study of semitriangular operators; see [HLP], [HLW], [LW1], [LW2].

Let $B(H)$ be the set of all bounded linear operators on H, $\sigma(T)$ denote
the spectrum of T in $B(H)$, $\sigma_e(T)$ denote the essential spectrum of T, and let \mathbb{N} be the
set of natural numbers. For any bounded sequence of complex numbers $\{s_n\}_{1}^{\infty}$, we
define the corresponding weighted backward shift S with respect to $\{e_n\}_{1}^{\infty}$ such that
$Se_1 = 0, Se_2 = s_1 e_1, Se_3 = s_2 e_2, \ldots, Se_{i+1} = s_i e_i, \ldots$. Clearly, $\|S\| = \sup \{|s_i|\}$.
Throughout this note, we always let $\mathbb{N}_0 = \{i \in \mathbb{N} : s_i = 0\}$.

The triangular extension spectrum was first introduced in [HLP] and it was
shown that the triangular extension spectrum plays a very important role in studying
semitriangular operators and algebraic extensions of triangular operators.

Definition 1. Let $T \in B(H)$ be a triangular operator. The triangular extension
spectrum of T, denoted by $\sigma_\Delta(T)$, is defined to be the set of all $t \in \mathbb{C}$ such that
there exists a \(b \in B(\mathbb{C}, H) (=H) \) with the property that
\[
A = \begin{pmatrix} T & b \\ 0 & t \end{pmatrix}
\]
has index of semitriangularity 1 in \(H \oplus \mathbb{C} \). Let \(\rho_\Delta(T) \) denote the complement of \(\sigma_\Delta(T) \) in \(\mathbb{C} \).

Lemma 2 ([HLP]). If \(T \) is a triangular operator, then \(t \in \sigma_\Delta(T) \) if and only if \(\mathcal{E}_T + \text{Ran}(T-tI) \neq H \).

It follows from the above lemma that \(\sigma_\Delta(T) \subseteq \sigma(T) \). In fact, it is shown that \(\sigma_\Delta(T) \) is always a compact subset of \(\sigma_c(T) \) ([HLP]). Theorem 2.7 of [HLW] implies \(\sigma_\Delta(T) = \emptyset \) if and only if \(T \) is algebraic.

Lemma 3 ([HLW]). If \(\mathcal{E}_T + \text{Ran}(T-tI) = H \), then there exists a positive integer \(k \) such that \(\ker(T-tI)^k + \text{Ran}(T-tI) = H \).

Lemma 4. Let \(S \) be a weighted backward shift. If \(S \) is not algebraic, then
\[
0 \in \sigma_\Delta(S) \text{ if and only if } \lim_{i \to \infty} |s_i| = 0.
\]

Proof. “\(\Rightarrow \)” Case 1: \(\mathbb{N}_0 \) is infinite.

Suppose \(\mathbb{N}_0 = \{n_1, n_2, \ldots \} \) such that \(n_1 < n_2 < n_3 < \cdots \). It is easy to see that \(S \) is algebraic if and only if \(S \) is nilpotent if and only if \(\mathbb{N}_0 \) is infinite and \(\sup\{n_{j+1} - n_j\} \) is finite. Let \(H_0 = [e_{n_1}, e_{n_2}, \ldots, e_{n_j}, \ldots] \), where \([\cdot] \) denotes the closed linear span. Since \(Se_{n_{j+1}} = e_{n_j}, \text{Ran}(S) \subseteq H_0^\perp \). Since \(S \) is not nilpotent, thus \(\forall k \in \mathbb{N}, \exists m_k \) such that \(S^k e_{m_k} \neq 0 \). Suppose \(n_{j-1} < m_k \leq n_{j_k} \); then \(S^k e_{m_k} \neq 0 \). Let \(b = \sum_{i=1}^{\infty} \frac{1}{i} e_i \). We show that \(b \not\in \ker(S^k) + \text{Ran}(S) \) for any \(k \), which, by Lemma 2 and Lemma 3, implies \(0 \in \sigma_\Delta(S) \).

Suppose \(b = u + Sv \), where \(u \in \text{Ker}(S^k) \). Let \(u = \sum_{i=1}^{\infty} u_i e_i \).

Since \(\text{Ran}(S) \subseteq H_0^\perp \), we have \(u_i = \frac{1}{i} \).

Since \(S^k u = \sum_{i=1}^{\infty} u_i S^k e_i = 0 \) and \(\langle S^k e_i, S^k e_j \rangle = 0 \), for all \(i \neq j \), where \(\langle \cdot, \cdot \rangle \) denotes the inner product, we have \(u_i S^k e_i = 0 \), for all \(i \), in particular, \(u_i S^k e_i = 0 \), i.e. \(S^k e_i = 0 \), thus \(S^k e_i = 0 \), for all \(i \), which is a contradiction.

Case 2: \(\mathbb{N}_0 \) is finite.

Let \(P_i \) be the orthogonal projections of \(H \) onto \([e_1, e_2, \ldots, e_n] \) for \(n = 1, 2, 3, \ldots \). We need to show that \(\ker(S^k) + \text{Ran}(S) \neq H \). Since \(\ker(S^i) \subseteq \ker(S^{i+1}) \) for all \(i \), we only need to show that \(\ker(S^k) + \text{Ran}(S) \neq H \) for \(k \) large enough. Without loss of generality, we assume \(k \) is large enough so that \(s_i \neq 0 \) for all \(i > k \). For any \(x = \sum_{i=1}^{\infty} x_i e_i \in \ker(S) \), \(Sx = \sum_{i=1}^{\infty} x_i s_i e_i = 0 \). Since \(\mathbb{N}_0 \) is finite, we have all but finitely many \(x_i \)'s are zero. Therefore there exists an \(N \) such that \(\ker(S) \subseteq P_N H \), so \(\ker(S^k) \subseteq P_M H \), where \(M = N + k \). If \(\ker(S^k) + \text{Ran}(S) = H \), then \(\text{Ran}(P_M^\perp S) = P_M^\perp \text{Ran}(S) = P_M^\perp H \). Note that \(P_M^\perp S = P_M^\perp SP_{M+1}^\perp \) and \(s_i \neq 0 \), for \(i > M \). Hence \(P_M^\perp SP_{M+1}^\perp \) is a 1-1 and onto map from \(P_M^\perp H \) to \(P_M^\perp H \). Therefore \(P_M^\perp SP_{M+1}^\perp \) is invertible by the open mapping theorem, but since \(\lim_{i \to \infty} |s_i| = 0 \), there exists a subsequence \(s_{n_j} \) such that \(s_{n_j} \to 0 \) as \(j \to \infty \). Thus \(P_M^\perp SP_{M+1}^\perp e_{n_j} = s_{n_j} e_{n_j} \to 0 \) as \(j \to \infty \), contradicting the fact that \(P_M^\perp SP_{M+1}^\perp \) is invertible.

“\(\Leftarrow \)” If \(\lim_{i \to \infty} |s_i| \neq 0 \), then there exist an \(\varepsilon_0 > 0 \) and a \(k_0 \in \mathbb{N} \) such that \(|s_i| > \varepsilon_0 \), for all \(i > k_0 \). For any \(x \in P_{k_0}^\perp H \), \(x = \sum_{i=k_0+1}^{\infty} x_i e_i \), let \(y = \sum_{i=k_0+1}^{\infty} \frac{1}{i} x_i e_i + 1 \); then \(Sy = x \), i.e. \(\text{Ran}(S) \supseteq P_{k_0}^\perp H \). Since \(P_{k_0}^\perp H \subseteq \ker(S^k) \) for \(k \) large enough, we have
Lemma 2 and Lemma 3, we have $\left|\left|\left|\left|\left| S \right|\right|\right|\right|$. From Lemma 7, $\dim \ker(S)$.

Proof. We only need to show that $\sigma(S) \subseteq \sigma(S)$. Let $t \in \sigma(S)$. If $t = 0$, then $t \in \sigma(S)$ by Lemma 4. If $t \neq 0$, then $\ker(S-tI) = 0$. By Lemma 2 and Lemma 3, $t \in \sigma(S)$ if and only if if $\ker(S-tI) = 0$, which is equivalent to $t \in \sigma(S)$ by the open mapping theorem, since $\ker(S-tI) = 0$. □

Lemma 6 ([S]). If S is a weighted backward shift with spectral radius r, then $\sigma(S) = \{t: |t| \leq r\}$.

The following is essentially Theorem 8 of [S].

Lemma 7. Let S be a weighted backward shift. Suppose that \mathbb{N}_0 is finite with $k_0 = \max\{i: i \in \mathbb{N}_0\}$. If $t \neq 0$, then $S-tI$ is not 1-1 if and only if

$$\sum_{n=k_0+1}^{\infty} \left| \frac{s_{n-k_0}}{s_n \cdots s_{k_0+1}} \right|^2 < \infty.$$

In this case, $\dim \ker(S-tI) = 1$.

Lemma 8. If $t \in \sigma(S)$ and $t \neq 0$, then $t \in \rho(S) \iff \ker(S-tI) = H$.

Proof. From Lemma 7, $\dim \ker(S-tI)$ is at most one, so for any k, $\dim \ker(S-tI)^k$ is finite (in fact at most k). For any natural number n and $y \in [e_1, \ldots, e_n]$, we can solve $(S-tI)x = y$ for x. Thus $\ker(S-tI)$ is dense in H. Combining the above with Lemma 2 and Lemma 3, we have $t \in \rho(S) \iff \exists k, \ker(S-tI)^k + \ker(S-tI) = H \Rightarrow \ker(S-tI) = H$. □

Corollary 9. If S is a weighted backward shift and S is not algebraic, then $\sigma(S) = \sigma_e(S)$.

Proof. This follows immediately from Lemma 4 and Lemma 8. □

Lemma 10 ([HLP]). Suppose that $A \in B(H)$ has a closed range and let P be the orthogonal projection of H onto $\ker(A)$. Then there exists an $\epsilon > 0$ such that $\ker(A) \subseteq \ker(A + \lambda P)$ for all λ with $|\lambda| < \epsilon$.

Corollary 11. If $\ker(S-tI) = H$, then there exists an $\epsilon > 0$ such that $\ker(S-zI) = H$ for all z with $|z-t| < \epsilon$.

Lemma 12. Suppose that \mathbb{N}_0 is finite with $k_0 = \max\{i: i \in \mathbb{N}_0\}$. If $t \in \sigma(S)$ and $t \neq 0$, then $t \in \rho(S)$ if and only if there exist an M and a z_0 with $|z_0| > |t|$ such that

$$\left| \frac{z_0^n}{s_k \cdots s_{k+n}} \right| \leq M, \quad \forall k > k_0, n > 0.$$

Proof. “$\Rightarrow”$ If $t \in \rho(S)$, and $t \neq 0$, then by Lemma 8, $\ker(S-tI) = H$. Since $t \in \sigma(S)$ and $S-tI$ is surjective, $t \not\in \partial \sigma(S)$. Combining with Corollary 11, we can find a disk (centered at t) contained in $\sigma(S)$ with the property that $\ker(S-tI) = H$ for all z in the disk. Since the disk is contained in the spectrum, we have $S-tI$ is
not 1-1 for all \(z \) in the disk. In particular, there exists a \(z_0 \) with \(|z_0| > |t| \) so that \(\operatorname{Ran}(S - z_0 I) = H \) and \(S - z_0 I \) is not 1-1. By Lemma 7,
\[
\sum_{n=0}^{\infty} \frac{|z_2^n|^{2n}}{|s_0 + n + \cdots + s_{k+1}|^2} < \infty.
\]
Hence \(S - z_0 I \) is onto and 1-1 from \(\ker(S - z_0 I)^\perp \) to \(H \), so it has a bounded inverse \(B \) from \(H \) to \(\ker(S - z_0 I)^\perp \).
For any \(k > k_0 \), let \(x^{(k)} = B e_k \), write \(x^{(k)} = \sum_{i=1}^{\infty} s_i^{(k)} e_i \); then \(\|x^{(k)}\| \leq \|B\| \), in particular, \(|x_i^{(k)}| \leq \|B\| \) for all \(i \). Let
\[
M = \left\{ 1 + \left(\sum_{n=0}^{\infty} \frac{|z_2^n|^{2n}}{|s_0 + n + \cdots + s_{k+1}|^2} \right)^{1/2} \right\} \|B\|.
\]
Since \((S - z_0 I)x^{(k)} = (S - z_0 I)Be_k = e_k \), we have
\[
s_k x_{k+1}^{(k)} - z_0 x_i^{(k)} = 0, \quad i \neq k, \quad \text{and} \quad s_k x_{k+1}^{(k)} - z_0 x_k^{(k)} = 1.
\]
From the above, we can obtain
\[
x_i^{(k)} = \frac{z_0}{s_k^{k-1}} x_i^{(k)} - \frac{z_0^{k-k_0-1}}{s_k^{k-1} \cdots s_{k+1}} x_k^{(k)}.
\]
Now for any positive integer \(n \),
\[
x_i^{(k)} = \frac{z_0}{s_k^{k+n}} x_i^{(k)} - \frac{z_0^{n+k-k_0-1}}{s_k^{k+n} \cdots s_{k+1}} x_k^{(k)}.
\]
Thus
\[
\frac{z_0^n}{s_k^{k+n} \cdots s_k} x_i^{(k)} - x_{k+1}^{(k)} + \frac{z_0^{n+k-k_0-1}}{s_k^{k+n} \cdots s_{k+1}} x_k^{(k)}.
\]
Therefore
\[
\left| \frac{z_0^n}{s_k^{k+n} \cdots s_k} x_i^{(k)} \right| \leq \left| x_{k+1}^{(k)} \right| + \left| \frac{z_0^{n+k-k_0-1}}{s_k^{k+n} \cdots s_{k+1}} x_k^{(k)} \right| \leq M.
\]
\("\leq"\) Note that when \(n = 1 \), \((\ast\ast) \) implies \(|\frac{z_0}{s_k^{k+1} s_k}| \leq M, \forall k > k_0 \), so
\[
\left| \frac{1}{s_k} \right| \leq M \left| \frac{s_k+1}{z_0} \right| \leq M \frac{\|S\|}{z_0}, \forall k > k_0.
\]
Let \(H_1 = \{ e_{k_0+1}, \ldots \} \). We only need to show \(\operatorname{Ran}(S - tI) \supset H_1 \).
First, we define a bounded linear operator \(R \) on \(H_1 \) such that \(R e_i = \frac{1}{t} e_{i+1}, \forall i \geq k_0 + 1 \). It follows that \(\|R\| \leq M \) and \(SR = I_{H_1} \). Since \((z_0 R)^n e_i = \frac{z_0^n}{s_{i+n-1} \cdots s_i} e_{i+n} \), we have \(\|(z_0 R)^n\| \leq \sup \{|\frac{z_0^n}{s_{i+n-1} \cdots s_i}| : i \geq k_0 + 1\} \leq M |z_0| \), which implies \(\|(tR)^n\| = \|z_0 R^n\| \leq M |z_0| \).
This follows directly from Theorem 5, Lemma 6 and Lemma 12.

Proof. Theorem 13.

If $\|Q\| = M|z_0|$, then $Q \leq M|z_0|$. Therefore, $Q = \sum_{n=1}^{\infty} tR^n$ defines a bounded linear operator on H_1. Given any $y \in H_1$, let $x = Qy$; then

$$(S - tI)x = (S - tI)Qy = (S - tI)\sum_{n=1}^{\infty} tR^n y$$

$$= \left(S \sum_{n=1}^{\infty} tR^n - t \sum_{n=1}^{\infty} (tR)^n \right) y$$

$$= \left(StR + S \sum_{n=2}^{\infty} tR^n - t \sum_{n=1}^{\infty} (tR)^n \right) y$$

$$= \left(tI_{H_1} + tI_{H_1} \sum_{n=1}^{\infty} tR^n - t \sum_{n=1}^{\infty} (tR)^n \right) y = ty.$$

This shows $\text{Ran}(S - tI) \supseteq H_1$.

Remark. (i) (***) implies (*). This is because if (***) holds, then

$$\sum_{n=0}^{\infty} \frac{|t|^{2n}}{|s_{k_0+n+1} \cdots s_{k_0+1}|^2} = \sum_{n=0}^{\infty} \left(\frac{t}{z_0} \right)^{2n} \frac{|z_0|}{|s_{k_0+n+1} \cdots s_{k_0+1}|^2}$$

$$\leq \sum_{n=0}^{\infty} \left(\frac{t}{z_0} \right)^{2n} M^2 < \infty.$$

(ii) (***) is equivalent to the following: For any fixed $N > k_0$, there exist an M and a z_0 with $|z_0| > |t|$ such that

$$\left| \frac{z_0^n}{s_{k+n}s_{k+n-1} \cdots s_{k}} \right| \leq M, \quad \forall k > N, \ n > 0.$$

Similarly, (*) is equivalent to: For any $N > k_0$,

$$\sum_{n=N}^{\infty} \left| \frac{1}{s_{n} \cdots s_{N}} \right|^2 < \infty.$$

(iii) In the proof of Lemma 12, we see that (***) implies $\frac{1}{s_i} \leq M \frac{\|S\|}{|z_0|}$, $\forall i > k_0$, i.e. $\lim_{i \to \infty} |s_i| \neq 0$.

If N_0 is finite, we define $r_1 = \inf\{|t|: t \text{ does not satisfy (***)}\}$, $r_2 = \inf\{|t|: t \text{ does not satisfy (*)}\}$. (In the case N_0 is infinite, we define $r_1 = r_2 = 0$.)

Since (***) implies (*), we have $r_1 \leq r_2$.

Theorem 13. If S is a weighted backward shift and S is not algebraic, then $\sigma_\Delta(S) = \{ t: r_1 \leq |t| \leq r \}$. In particular, if S is the standard backward shift, then $\sigma_\Delta(S) = \{ t: |t| = 1 \}$.

Proof. This follows directly from Theorem 5, Lemma 6 and Lemma 12.

Lemma 12 together with Lemma 7 implies the next corollary which gives a more descriptive picture of the spectrum of a weighted backward shift.

Corollary 14. With assumptions as above, we have the following:

(i) If $|t| < r_1$, then $S - tI$ is onto but not 1-1.

(ii) If $r_1 \leq |t| < r_2$, then $S - tI$ is neither 1-1 nor onto.
(iii) If \(r_2 < |t| \leq r \), then \(S - tI \) is 1-1 but not onto.
(iv) If \(|t| < r \), then \(S - tI \) is invertible.

Remark. \(S - r_2I \) can be 1-1 in some cases and not 1-1 in others. In the case \(r_1 = r_2 \), we do not have (ii) of the above theorem and in the case \(r_2 = r \), we do not have (iii) of the above theorem. However, we always have if \(r_1 \leq |t| \leq r \), then \(S - tI \) is not onto, that is, \(\sigma_\Delta(S) = \{ t : r_1 \leq |t| \leq r \} \) if \(S \) is not algebraic.

The following example shows we can always choose a weighted backward shift with desired \(r_1, r_2 \) and \(r \). For simplicity, we assume \(r = 1 \).

Example. Suppose that \(0 < a < b < 1 \). Define a weighted backward shift as follows: For \(k = 0, 1, 2, \ldots \), define

\[
s_i = 1 \quad \frac{1}{2}k(k+1)(n+2) < i \leq \frac{1}{2}k(k+1)(n+2) + (k+1),
\]

\[
s_i = a \quad \frac{1}{2}k(k+1)(n+2) + (k+1) < i \leq \frac{1}{2}k(k+1)(n+2) + 2(k+1),
\]

\[
s_i = d \quad \frac{1}{2}k(k+1)(n+2) + 2(k+1) < i \leq \frac{1}{2}k(k+1)(n+2) + (n+2)(k+1)
\]

where \(n \) is fixed such that \(\left(\frac{a}{b} \right)^{n+1} \leq b \) and \(b^{n+1} \leq \frac{a}{b} \), and \(d = \sqrt[2]{\frac{b^{n+2}}{a}} \). It can be verified that \(r_1 = a, r_2 = b \) and \(r = 1 \).

Corollary 15. For any \(L_1 < L_2 \), there exists a weighted backward shift \(S \) such that \(\sigma_\Delta(S) = \{ t : L_1 \leq |t| \leq L_2 \} \).

The author would like to thank Professor David Larson for valuable suggestions. The author would also like to thank the referee for several very helpful suggestions and for pointing out an error in the original proof of Lemma 12.

References

Department of Mathematics, Saginaw Valley State University, University Center, Michigan 48710

E-mail address: pan@tardis.svsu.edu