Quasinormal subrelations of ergodic

equivalence relations

Author:
Alexandre I. Danilenko

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3361-3370

MSC (1991):
Primary 28D99, 46L55

MathSciNet review:
1610944

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a notion of quasinormality for a nested pair of ergodic discrete hyperfinite equivalence relations of type . (This is a natural extension of the normality concept due to Feldman-Sutherland-Zimmer.) Such pairs are characterized by an irreducible pair of countable amenable groups or rather (some special) their Polish closure . We show that ``most'' of the ergodic subrelations of are quasinormal and classify them. An example of a nonquasinormal subrelation is given. We prove as an auxiliary statement that two cocycles of with dense ranges in a Polish group are weakly equivalent.

**[CFW]**A. Connes, J. Feldman, and B. Weiss,*An amenable equivalence relation is generated by a single transformation*, Ergodic Theory Dynamical Systems**1**(1981), no. 4, 431–450 (1982). MR**662736****[CK]**J. R. Choksi and Shizuo Kakutani,*Residuality of ergodic measurable transformations and of ergodic transformations which preserve an infinite measure*, Indiana Univ. Math. J.**28**(1979), no. 3, 453–469. MR**529678**, 10.1512/iumj.1979.28.28032**[CHP]**J. R. Choksi, J. M. Hawkins, and V. S. Prasad,*Abelian cocycles for nonsingular ergodic transformations and the genericity of type 𝐼𝐼𝐼₁ transformations*, Monatsh. Math.**103**(1987), no. 3, 187–205. MR**894170**, 10.1007/BF01364339**[Da]**A. I. Danilenko,*Comparison of cocycles of measured equivalence relations and lifting problems*, Ergod. Th. and Dynam. Sys.**18**(1998), 125-151.**[Dy]**H. A. Dye,*On groups of measure preserving transformation. I*, Amer. J. Math.**81**(1959), 119–159. MR**0131516**

H. A. Dye,*On groups of measure preserving transformations. II*, Amer. J. Math.**85**(1963), 551–576. MR**0158048****[FM]**Jacob Feldman and Calvin C. Moore,*Ergodic equivalence relations, cohomology, and von Neumann algebras. I*, Trans. Amer. Math. Soc.**234**(1977), no. 2, 289–324. MR**0578656**, 10.1090/S0002-9947-1977-0578656-4**[FSZ]**J. Feldman, C. E. Sutherland, and R. J. Zimmer,*Subrelations of ergodic equivalence relations*, Ergodic Theory Dynam. Systems**9**(1989), no. 2, 239–269. MR**1007409**, 10.1017/S0143385700004958**[GLS]**P. Gabriel, M. Lema\'{n}czyk, and K. Schmidt,*Extensions of cocycles for hyperfinite actions and applications*, Mh. Math.**123**(1997), 209-228. CMP**97:10****[Ge]**Marlies Gerber,*Factor orbit equivalence of compact group extensions and classification of finite extensions of ergodic automorphisms*, Israel J. Math.**57**(1987), no. 1, 28–48. MR**882245**, 10.1007/BF02769459**[GS]**V. Ya. Golodets and S. D. Sinel′shchikov,*Classification and structure of cocycles of amenable ergodic equivalence relations*, J. Funct. Anal.**121**(1994), no. 2, 455–485. MR**1272135**, 10.1006/jfan.1994.1056**[Jo]**V. F. R. Jones,*Index for subfactors*, Invent. Math.**72**(1983), no. 1, 1–25. MR**696688**, 10.1007/BF01389127**[JT]**V. F. R. Jones and M. Takesaki,*Actions of compact abelian groups on semifinite injective factors*, Acta Math.**153**(1984), no. 3-4, 213–258. MR**766264**, 10.1007/BF02392378**[PS]**K. R. Parthasarathy and K. Schmidt,*On the cohomology of a hyperfinite action*, Monatsh. Math.**84**(1977), no. 1, 37–48. MR**0457680****[Su]**C. Sutherland,*Notes on orbit equivalence; Krieger's theorem*, Lecture Notes Ser., vol. 23, Institute of Mathematics, University of Oslo, Norway, 1976.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
28D99,
46L55

Retrieve articles in all journals with MSC (1991): 28D99, 46L55

Additional Information

**Alexandre I. Danilenko**

Affiliation:
Department of Mechanics and Mathematics, Kharkov State University, Freedom square 4, Kharkov, 310077, Ukraine

Email:
danilenko@ilt.kharkov.ua

DOI:
https://doi.org/10.1090/S0002-9939-98-04909-0

Received by editor(s):
April 10, 1997

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1998
American Mathematical Society