MULTIPLIER THEOREMS FOR HERZ TYPE HARDY SPACES

SHANZHEN LU AND DACHUN YANG

(Communicated by J. Marshall Ash)

Abstract. In this paper, the authors establish a multiplier theorem for Herz type Hardy spaces.

Let T_m be a multiplier operator defined in terms of Fourier transforms by

$$\hat{T}_m f(\xi) = m(\xi) \hat{f}(\xi)$$

for suitable functions f. It is well-known that there is a multiplier theorem for $H^1(\mathbb{R}^n)$ (see [FS]): if $\alpha > n/2$ and

$$\int_{R < |\xi| < 2R} |D^\beta m(\xi)|^2 d\xi \leq CR^{n-2|\beta|}, \ 0 < R < \infty,$$

(1)

for all $|\beta| \leq \alpha$, then T_m can be extended to be a bounded operator on $H^1(\mathbb{R}^n)$. That is, m is a bounded multiplier of $H^1(\mathbb{R}^n)$.

Fix a function $\eta \in C_0^\infty(\mathbb{R}^n)$ with $0 \leq \eta \leq 1$, $\eta = 1$ on $1/2 \leq |\xi| \leq 2$ and $\text{supp} \eta \subset \{1/4 \leq |\xi| \leq 4\}$. For $\delta > 0$, let us denote $m_\delta(\xi) = m(\delta \xi) \eta(\xi)$.

It is easy to check that (1) is equivalent to

$$\sup_\delta \|\hat{m}_\delta\|_{K^{\alpha,2}_2(\mathbb{R}^n)} < \infty,$$

(2)

where $K^{\alpha,2}_2(\mathbb{R}^n)$ is a non-homogeneous Herz space (see [BS]). By using some embedding relations on Herz spaces, A. Baernstein II and E. T. Sawyer [BS] weakened (2) into

$$\sup_\delta \|\hat{m}_\delta\|_{K^{\alpha-1,1}_1(\mathbb{R}^n)} < \infty,$$

(3)

where $0 < \varepsilon < \alpha - \frac{n}{2}$. In fact, this is just a special case of their theorem. In [BS], Baernstein and Sawyer showed that m is a bounded multiplier of $H^1(\mathbb{R}^n)$ under an even weaker condition than (3); see Theorem 3b in [BS, page 21].

By using the technique of Herz type Hardy spaces developed by the authors in [LY1]-[LY3] and [Y], in this paper, we shall first establish a multiplier theorem for the homogeneous Herz type Hardy space $HK^{\alpha(1-1/q),1}_q(\mathbb{R}^n)$ which is introduced by the authors of this paper in [LY1]. Then as simple consequences of this theorem, a multiplier theorem for the corresponding non-homogeneous version of the space...
$H K_q^{(1 - 1/q, 1)}(\mathbb{R}^n)$ and the special case mentioned above of the multiplier theorem of Baernstein and Sawyer for $H^1(\mathbb{R}^n)$ will be deduced.

Now, for the reader’s convenience, let us recall the definition of the Herz spaces here. For $k \in \mathbb{Z}$, let $B_k = \{x \in \mathbb{R}^n : |x| \leq 2^k\}$ and $A_k = B_k \setminus B_{k-1}$. We also denote by χ_k the characteristic function of the set A_k.

Definition 1. Let $\alpha \in \mathbb{R}$ and $0 < p, q \leq \infty$.

(i) The homogeneous Herz space $K_q^{\alpha, p}(\mathbb{R}^n)$ is defined in terms of

$$
\|f\|_{K_q^{\alpha, p}(\mathbb{R}^n)} = \left\{ \sum_{k=-\infty}^{\infty} 2^{k\alpha p} \|f \chi_k\|_{L^q(\mathbb{R}^n)} \right\}^{1/p}
$$

by letting

$$
K_q^{\alpha, p}(\mathbb{R}^n) = \{ f \in L^q_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) : \|f\|_{K_q^{\alpha, p}(\mathbb{R}^n)} < \infty \}.
$$

(ii) The non-homogeneous Herz space $K_q^{\alpha, p}(\mathbb{R}^n)$ is defined in terms of

$$
\|f\|_{K_q^{\alpha, p}(\mathbb{R}^n)} = \left\{ \|f \chi_k\|_{L^q(\mathbb{R}^n)} + \sum_{k=1}^{\infty} 2^{k\alpha p} \|f \chi_k\|_{L^q(\mathbb{R}^n)} \right\}^{1/p}
$$

by letting

$$
K_q^{\alpha, p}(\mathbb{R}^n) = \{ f \in L^q_{\text{loc}}(\mathbb{R}^n) : \|f\|_{K_q^{\alpha, p}(\mathbb{R}^n)} < \infty \}.
$$

Here the usual modification was made when $p = \infty$.

In what follows, when $p = 1$, $1 < q < \infty$ and $\alpha = n(1 - 1/q)$, we shall abbreviate $K_q^{\alpha, p}(\mathbb{R}^n)$ and $K_q^{\alpha, p}(\mathbb{R}^n)$, respectively, as $K_q(\mathbb{R}^n)$ and $A^q(\mathbb{R}^n)$. The latter is also said to be the Beurling algebras; see [CL] and [GR].

Definition 2. Let $1 < q < \infty$. For $f \in S'(\mathbb{R}^n)$, let Gf be the grand maximal function of f (see [FS] for its definition).

(i) The Hardy space $H K_q(\mathbb{R}^n)$ associated with the Herz space $K_q(\mathbb{R}^n)$ is defined by

$$
H K_q(\mathbb{R}^n) = \{ f \in S'(\mathbb{R}^n) : Gf \in K_q(\mathbb{R}^n) \}.
$$

In this case, we also define $\|f\|_{H K_q(\mathbb{R}^n)} = \|Gf\|_{K_q(\mathbb{R}^n)}$.

(ii) The Hardy space $H A^q(\mathbb{R}^n)$ associated with the Beurling algebra $A^q(\mathbb{R}^n)$ is defined by

$$
H A^q(\mathbb{R}^n) = \{ f \in S'(\mathbb{R}^n) : Gf \in A^q(\mathbb{R}^n) \}.
$$

In this case, we also define $\|f\|_{H A^q(\mathbb{R}^n)} = \|Gf\|_{A^q(\mathbb{R}^n)}$.

We remark that $H A^q(\mathbb{R}^n)$ was first introduced by Chen and Lau in [CL] for $n = 1$, and then by García-Cuerva in [GR] for $n > 1$. Obviously, $H K_q(\mathbb{R}^n)$ is a homogeneous version of $H A^q(\mathbb{R}^n)$. Moreover, in [LY1], the authors proved that

(4) $H A^q(\mathbb{R}^n) = H K_q(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$

and

(5) $\|f\|_{H A^q(\mathbb{R}^n)} \sim \|f\|_{H K_q(\mathbb{R}^n)} + \|f\|_{L^q(\mathbb{R}^n)}$.
It is also well-known that \(HA^q(\mathbb{R}^n) \subsetneq \mathcal{H}^q(\mathbb{R}^n) \subsetneq H^1(\mathbb{R}^n) \) for any \(q \in (1, \infty) \).

Let us now formulate our multiplier theorem for \(\mathcal{H}^q(\mathbb{R}^n) \).

Theorem 1. Let \(q \in (1, \infty) \) and \(m \) satisfy

\[
M \equiv \sup_{\delta} \| \hat{m}_\delta \|_{K_1^n(1-1/q,1)} < \infty.
\]

Then \(m \) is a bounded multiplier of \(\mathcal{H}^q(\mathbb{R}^n) \).

By Corollary 2 in [BS, page 22], we know that if \(m \) satisfies the condition of Theorem 1, then \(m \) is a bounded multiplier of \(L^q(\mathbb{R}^n) \) for \(1 < q < \infty \). Therefore, from (4), (5) and Theorem 1, we have the following simple corollary.

Corollary 1. Let \(q \in (1, \infty) \) and \(m \) satisfy (6). Then \(m \) is a bounded multiplier of \(HA^q(\mathbb{R}^n) \).

The proof of Theorem 1 is based on the decomposition characterizations of Herz spaces and Herz type Hardy spaces in terms of central units and central atoms respectively. Let us recall that a function \(e(x) \) is said to be a central \((\alpha, q)\) unit of restrict type if it satisfies

i) \(\text{supp} e \subset B(0, r), r \geq 1 \);

ii) \(\| e \|_{L^q(\mathbb{R}^n)} \leq |B(0, r)|^{-\alpha/n} \).

Lemma 1 ([LY2]). Let \(0 < \alpha < \infty, \ 0 < p < \infty \) and \(1 \leq q < \infty \). Then \(f \in K_\alpha^{\alpha,p}(\mathbb{R}^n) \) if and only if \(f \) can be expressed as

\[
f(x) = \sum_{k=0}^{\infty} \lambda_k e_k(x),
\]

where each \(e_k \) is a central \((\alpha, q)\) unit of restrict type supported on \(B_k \) and \(\sum_{k=0}^{\infty} |\lambda_k|^p < \infty \). Moreover,

\[
\inf \left\{ \left(\sum_{k} |\lambda_k|^p \right)^{1/p} \right\} \sim \| f \|_{K_\alpha^{\alpha,p}(\mathbb{R}^n)},
\]

where the infimum is taken over all of the above decompositions of \(f \).

Let us now turn to the definition of central atoms. A function \(a(x) \) is said to be a central \((1, q)\) atom if \(a \) satisfies

i) \(\text{supp} a \subset B(0, r), r > 0 \);

ii) \(\| a \|_{L^q(\mathbb{R}^n)} \leq |B(0, r)|^{1/q-1} \);

iii) \(\int_{\mathbb{R}^n} a(x)dx = 0 \).

Lemma 2 ([LY3]). Let \(1 < q < \infty \). Then \(f \in \mathcal{H}^q(\mathbb{R}^n) \) if and only if \(f \) can be expressed as

\[
f(x) = \sum_{k=-\infty}^{\infty} \lambda_k a_k(x),
\]

where each \(a_k \) is a central \((1, q)\) atom supported on \(B_k \) and \(\sum_{k=-\infty}^{\infty} |\lambda_k| < \infty \). Moreover,

\[
\inf \left\{ \sum_{k=-\infty}^{\infty} |\lambda_k| \right\} \sim \| f \|_{\mathcal{H}^q(\mathbb{R}^n)},
\]

where the infimum is taken over all of the above decompositions of \(f \).
To prove Theorem 1, we still need a lemma. Let \(\psi \in \mathcal{S}(\mathbb{R}^n) \), the Schwartz space of functions. In what follows, we let \(\hat{a}_\delta(\xi) \equiv \hat{a}(\delta \xi) \psi(\xi) \).

Lemma 3. Let \(a \) be a central \((1, q)\) atom supported on \(B(0, 1) \) and \(b_j = (\hat{a}_{2^j})' \). Then for any given \(d > 0 \), we have the following three facts:

(i) \(|b_j|_{L^q(\mathbb{R}^n)} \leq C 2^{-nj(1-1/q)} \).

(ii) \(|b_j(x)| \leq C_d 2^{-nj(1-1/d)} |x|^{-d} \), for \(|x| \geq 2^j+1 \).

(iii) \(|b_j(x)| \leq C_d 2^j (1+|x|)^{-d} \), for all \(x \) and \(j \leq 0 \).

Proof. Since \(1 < q < \infty \) and
\[
 b_j(x) = 2^{-nj} \int_{|x-y|<2^j} a(2^{-j}(x-y)) \hat{\psi}(y) dy,
\]
it follows from the generalized Minkowski inequality that
\[
 \|b_j\|_{L^q(\mathbb{R}^n)} \leq 2^{-nj} \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^n} |a(2^{-j}(x-y))|^{q} dx \right\}^{1/q} |\hat{\psi}(y)| dy \\
\leq C 2^{-nj} 2^{nj/q} \|a\|_{L^q(\mathbb{R}^n)} \|\hat{\psi}\|_{L^q(\mathbb{R}^n)} \leq C 2^{-nj(1-1/q)}.
\]
Thus, (i) holds. Let us now assume \(|x| \geq 2^j+1 \). Note that \(|y| \geq |x|/2 \) and \(\hat{\psi} \in \mathcal{S}(\mathbb{R}^n) \). Then we have
\[
 |b_j(x)| \leq 2^{-nj} \int_{|x-y|<2^j} |a(2^{-j}(x-y))| \cdot |\hat{\psi}(y)| dy \\
\leq 2^{-nj} \left(\int_{|x-y|<2^j} |a(2^{-j}(x-y))|^{q} dy \right)^{1/q} \left(\int_{|x-y|<2^j} |\hat{\psi}(y)|^{q'} dy \right)^{1/q'} \\
= 2^{nj(1/q'-1)} \|a\|_{L^q(\mathbb{R}^n)} \left(\int_{|y|>|x|/2} |\hat{\psi}(y)|^{q'} dy \right)^{1/q'} \\
\leq C_d 2^{nj(1/q'-1)} |x|^{-d}.
\]
Thus, (ii) also holds. Finally, let us assume \(j \leq 0 \). Since \(\int_{\mathbb{R}^n} a(y) dy = 0 \), we have
\[
 b_j(x) = \int_{|y|<1} a(y) \{ \hat{\psi}(x-2^jy) - \hat{\psi}(x) \} dy.
\]
It follows from the mean value theorem that there exists a \(\theta \in (0, 1) \) such that
\[
 |b_j(x)| \leq \int_{|y|<1} |a(y)| \cdot |(\nabla_x \hat{\psi})(x-\theta 2^j y)| 2^j |y| dy,
\]
where \(\nabla_x = \left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right) \). Note that \(1 + |x-\theta 2^j y| \geq (1+|x|)/2 \) and \(\hat{\psi} \in \mathcal{S}(\mathbb{R}^n) \). Then we have
\[
 |b_j(x)| \leq C_d 2^j (1+|x|)^{-d} \int_{|y|<1} |y| \cdot |a(y)| dy \leq C_d 2^j (1+|x|)^{-d}.
\]
This completes the proof of the lemma.

Proof of Theorem 1. By the decompositions of \(\mathcal{H}^\bullet_{K,q}(\mathbb{R}^n) \) in terms of central atoms, it suffices to prove that the inequality
\[
 \|T_m a\|_{\mathcal{H}^\bullet_{K,q}(\mathbb{R}^n)} \leq C
\]
holds for all central \((1, q)\) atoms \(a(x) \). Let \(a(x) \) be a central \((1, q)\) atom. Since \(M \) is invariant for all dilations of \(m \), we may assume \(\text{supp } a \subset B(0, 1) \). In Lemma 3,
We write
\[m(\xi)\hat{a}(\xi) = \sum_{j=-\infty}^{\infty} m(\xi)\eta(2^{-j}\xi)\hat{a}(\xi)\psi(2^{-j}\xi) \]

where \(\hat{a}(\xi) = \hat{a}(\delta\xi)\psi(\xi) \). By letting \(N_j \equiv (m_{2^j})^\vee \), we have
\[T_m a(x) = \sum_{j=-\infty}^{\infty} 2^{nj}(N_j * b_j)(2^j x). \]

Without loss of generality, we may assume \(M = 1 \). Thus, the inequality \(\|m\|_{L^1(\mathbb{R}^n)} \leq 1 \) holds for any \(\delta > 0 \). Therefore, it follows from the Hausdorff-Young inequality that \(\|m\|_{L^\infty(\mathbb{R}^n)} \leq 1 \) and
\[\|N_j\|_{L^1(\mathbb{R}^n)} \leq \|N_j\|_{K^{(1-\alpha)}_1(\mathbb{R}^n)} \leq 1. \]

Let us first prove
\[\|T_m a\|_{K_q(\mathbb{R}^n)} \leq C, \]
where \(C \) is independent of \(a \) and \(a \) is a central \((1, q)\) atom with \(\text{supp } a \subset B(0, 1) \).

We write
\[\|T_m a\|_{K_q(\mathbb{R}^n)} = \sum_{k=-\infty}^{\infty} 2^{kn(1-1/q)}\|(T_m a)\chi_k\|_{L^q(\mathbb{R}^n)} = \sum_{k=-\infty}^{\infty} \cdots + \sum_{k=3}^{\infty} \cdots = I_1 + I_2. \]

Since \(m \) is a bounded multiplier of \(L^q(\mathbb{R}^n) \) by Corollary 2 in [BS, page 22], we have
\[I_1 \leq C \sum_{k=-\infty}^{\infty} 2^{kn(1-1/q)}\|a\|_{L^s(\mathbb{R}^n)} \leq C \sum_{k=-\infty}^{\infty} 2^{nk(1-1/q)} \leq C. \]

On the other hand, by (8), we have
\[I_2 = \sum_{k=3}^{\infty} 2^{kn(1-1/q)}\|(T_m a)\chi_k\|_{L^s(\mathbb{R}^n)} \leq \sum_{k=3}^{\infty} \sum_{j=-\infty}^{\infty} 2^{nj} 2^{kn(1-1/q)}\|(N_j * b_j)\chi_k(\cdot)\|_{L^s(\mathbb{R}^n)} \]
\[= \sum_{j=-\infty}^{\infty} \sum_{l=j+3}^{\infty} 2^{n(l-1/q)}\|(N_j * b_j)\chi(\cdot)\|_{L^q(\mathbb{R}^n)} \]
\[= \sum_{j=-\infty}^{\infty} \sum_{l=j+3}^{\infty} \cdots + \sum_{j=1}^{\infty} \sum_{l=j+3}^{\infty} \cdots \equiv I_{2,1} + I_{2,2}. \]
Let us first estimate $I_{2,1}$. By Lemma 1, N_j can be expressed as

$$N_j(x) = \sum_{k=0}^{\infty} \lambda_k^j e_k^j(x),$$

where each e_k^j is a central $(n(1-1/q),1)$ unit of restrict type supported on B_k and

$$\inf \left(\sum_{k=0}^{\infty} |\lambda_k^j| \right) \sim \|N_j\|_{K_1^{n(1-1/q),1}(\mathbb{R}^n)}.$$

Thus,

$$I_{2,1} = \sum_{j=-\infty}^{0} \sum_{l=j+3}^{\infty} 2^{nl(1-1/q)} \|(N_j * b_j)(\cdot)\chi_l(\cdot)\|_{L^q(\mathbb{R}^n)}$$

$$\leq \sum_{j=-\infty}^{0} \sum_{l=j+3}^{\infty} 2^{nl(1-1/q)} \sum_{k=0}^{\infty} |\lambda_k^j| \cdot \|(e_k^j * b_j)\chi_l\|_{L^q(\mathbb{R}^n)}$$

$$= \sum_{j=-\infty}^{0} \sum_{l=j+3}^{\infty} 2^{nl(1-1/q)} \max\{l-2,0\} \sum_{k=0}^{\infty} |\lambda_k^j| \cdot \|(e_k^j * b_j)\chi_l\|_{L^q(\mathbb{R}^n)}$$

$$\leq \sum_{j=-\infty}^{0} \sum_{l=j+3}^{\infty} 2^{nl(1-1/q)} \sum_{k=0}^{\infty} |\lambda_k^j| \cdot \|(e_k^j * b_j)\chi_l\|_{L^q(\mathbb{R}^n)}$$

$$= I_{2,1}^1 + I_{2,1}^2.$$

By (iii) in Lemma 3 with $d = n + \varepsilon$, $0 < \varepsilon < 1$, we have

$$\|(e_k^j * b_j)\chi_l\|_{L^q(\mathbb{R}^n)} \leq C 2^j \|e_k^j\|_{L^q(\mathbb{R}^n)} \left(\int_{A_i} |x|^{-d/q} dx \right)^{1/q}$$

$$\leq C 2^j 2^{-(n+\varepsilon)} 2^{jn/q}.$$

Thus, we obtain

$$I_{2,1}^1 \leq C \sum_{j=-\infty}^{0} 2^j \sum_{l=j+3}^{\infty} 2^{-\varepsilon l} \sum_{k=0}^{\infty} |\lambda_k^j|$$

$$\leq C \sum_{j=-\infty}^{0} 2^j 2^{-\varepsilon j} \|N_j\|_{K_1^{n(1-1/q),1}(\mathbb{R}^n)}$$

$$\leq C \sum_{j=-\infty}^{0} 2^j (1-\varepsilon) \leq C.$$
Thus, we obtain

\[
I_{2,1}^2 \leq C \sum_{j=-\infty}^{0} 2^j \sum_{l=j+3}^{\infty} 2^{n_1(1-1/q)} \sum_{k=\max\{l-1,0\}}^{\infty} |\lambda_k^j| 2^{-kn_1(1-1/q)}
\]

\[
\leq C \sum_{j=-\infty}^{0} 2^j \sum_{k=0}^{\infty} |\lambda_k^j| 2^{-kn_1(1-1/q)} \sum_{l=-\infty}^{k+1} 2^{n_1(1-1/q)}
\]

\[
\leq C \sum_{j=-\infty}^{0} 2^j \|N_j\|_{K_1^{n_1(1-1/q),1}(\mathbb{R}^n)} \leq C.
\]

Hence, we obtain \(I_{2,1} \leq C\).

We now estimate \(I_{2,2}\). Let \(x \in A_l\), \(l \geq j + 3\). Then,

\[
(N_j * b_j)(x) = \int_{|y| \leq 2^{l-1}} N_j(y)b_j(x-y)dy
\]

\[
+ [(N_j\chi_{\bar{A}}_l) * b_j](x) + \int_{|y| > 2^{l+2}} N_j(y)b_j(x-y)dy,
\]

where \(\bar{A}_l = A_{l-1} \cup A_l \cup A_{l+1}\). Note that if \(|y| \leq 2^{l-2}\) and \(x \in A_l\), \(l \geq j + 3\), then \(|x-y| \geq 2^{l+1}\) and \(|x-y| \geq |x|/2\). Thus, it follows from (ii) in Lemma 3 that

\[
|b_j(x-y)| \leq C_d 2^{-n_j(1-1/q)} |x|^{-d} \leq C_d 2^{-n_j(1-1/q)} 2^{-ld}.
\]

Also, note that if \(|y| > 2^{l+3}\) and \(x \in A_l\), \(l \geq j + 3\), then \(|x-y| \geq 2^{l+1}\) and \(|x-y| \geq |y|/2\). Also, it follows from (ii) in Lemma 3 that

\[
|b_j(x-y)| \leq C_d 2^{-n_j(1-1/q)} |y|^{-d} \leq C_d 2^{-n_j(1-1/q)} 2^{-ld}.
\]

Thus, when \(x \in A_l\), \(l \geq j + 3\), we have

\[
|(N_j * b_j)(x)| \leq C_d 2^{-n_j(1-1/q)} 2^{-ld} \|N_j\|_{L^1(\mathbb{R}^n)} + |(N_j\chi_{\bar{A}}_l) * b_j(x)|
\]

\[
\leq C_d 2^{-n_j(1-1/q)-ld} + |(N_j\chi_{\bar{A}}_l) * b_j(x)|.
\]

Applying these estimates and (i) in Lemma 3 with \(d = n + \varepsilon\) to \(I_{2,2}\), we obtain

\[
I_{2,2} = \sum_{j=1}^{\infty} \sum_{l=j+3}^{\infty} 2^{n_1(1-1/q)} \|(N_j * b_j)(\cdot)\chi(\cdot)\|_{L^s(\mathbb{R}^n)}
\]

\[
\leq C \sum_{j=1}^{\infty} \sum_{l=j+3}^{\infty} 2^{n_1(1-1/q)} 2^{-n_j(1-1/q)} 2^{-ld} 2^{ln/n}
\]

\[
+ \sum_{j=1}^{\infty} \sum_{l=j+3}^{\infty} 2^{ln(1-1/q)} \|(N_j\chi_{\bar{A}}_l) * b_j(\cdot)\chi(\cdot)\|_{L^s(\mathbb{R}^n)}
\]

\[
\leq C \sum_{j=1}^{\infty} 2^{-j(d-n/q)} + \sum_{j=1}^{\infty} \sum_{l=j+3}^{\infty} 2^{ln(1-1/q)} \|N_j\chi_{\bar{A}}_l\|_{L^1(\mathbb{R}^n)} \|b_j\|_{L^s(\mathbb{R}^n)}
\]

\[
\leq C + C \sum_{j=1}^{\infty} 2^{-n_j(1-1/q)} \|N_j\|_{K_1^{n_1(1-1/q),1}(\mathbb{R}^n)} \leq C + C \sum_{j=1}^{\infty} 2^{-n_j(1-1/q)} \leq C.
\]

Now, (9) follows from the above estimates on \(I_1, I_{2,1}\) and \(I_{2,2}\).
Actually, it is easy to prove that (9) is true for any central \((1, q)\) atom. That is, the inequality
\[
\|T_m \tilde{a}\|_{K_q(\mathbb{R}^n)} \leq C
\]
holds for any central \((1, q)\) atom \(\tilde{a}\). In fact, let us assume that \(\text{supp} \tilde{a} \subset B(0, r)\). Obviously, there exists a \(k_0 \in \mathbb{Z}\) such that \(2^{k_0} < r \leq 2^{k_0+1}\). If \(I_1\) and \(I_2\) in the proof of (9) are now replaced by
\[
\sum_{k=-\infty}^{k_0+2} 2^{kn(1-1/q)} \|(T_m \tilde{a}) \chi_k\|_{L^q(\mathbb{R}^n)}
\]
and
\[
\sum_{k=k_0+3}^{\infty} 2^{kn(1-1/q)} \|(T_m \tilde{a}) \chi_k\|_{L^q(\mathbb{R}^n)}
\]
respectively, then (10) can be proved by a method similar to that of proving (9).

To prove (7), by the characterization of \(HK_q(\mathbb{R}^n)\) in terms of Riesz transforms (see [Y]), it suffices to show
\[
\sum_{j=1}^{n} \|R_j(T_m a)\|_{K_q(\mathbb{R}^n)} \leq C,
\]
where \(C\) is independent of \(a\) and \(R_j\) is the \(j\)-th Riesz transform. Since Riesz transforms are bounded on \(HK_q(\mathbb{R}^n)\) (see [Y]), we have
\[
R_j a(x) = \sum_k \lambda_k^j a_k(x)
\]
and
\[
\sum_k |\lambda_k^j| \leq C \|R_j a\|_{HK_q(\mathbb{R}^n)} \leq C,
\]
where each \(a_k^j\) is a central \((1, q)\) atom and \(C\) is independent of \(a\). Thus, it follows from (10) that
\[
\sum_{j=1}^{n} \|R_j(T_m a)\|_{K_q(\mathbb{R}^n)} = \sum_{j=1}^{n} \sum_k \|\lambda_k^j(T_m a_k^j)\|_{K_q(\mathbb{R}^n)} \leq C \sum_{j=1}^{n} \sum_k |\lambda_k^j| \leq C.
\]
Thus, (11) holds. This completes the proof of Theorem 1.

Let us now point out that if a linear operator \(T\) commutes with translations, then the boundedness of \(T\) on \(HK_q(\mathbb{R}^n)\) implies its boundedness on \(H^1(\mathbb{R}^n)\). Precisely, we have

Theorem 2. Let \(T\) be a linear operator that commutes with translations. If \(T\) is bounded on \(HK_q(\mathbb{R}^n)\), \(1 < q < \infty\), then \(T\) is also bounded on \(H^1(\mathbb{R}^n)\).
Proof. By the atomic decomposition of $H^1(\mathbb{R}^n)$ (see [CW]), it suffices to prove that the inequality

$$\|Ta\|_{H^1(\mathbb{R}^n)} \leq C$$

holds for any $(1, q)$ atom a. Let $a(x)$ be a $(1, q)$ atom supported on $B(x_0, r)$. That is, $a(x)$ satisfies the following conditions: $\text{supp} a \subset B(x_0, r), \|a\|_{L^q(\mathbb{R}^n)} \leq |B(x_0, r)|^{1/q - 1}$, and $\int_{\mathbb{R}^n} a(x) dx = 0$. Let $\tilde{a}(x) \equiv \tau_{-x_0} a(x) = a(x + x_0)$. It is easy to see that \tilde{a} is a central $(1, q)$ atom supported on $B(0, r)$. Thus, from the conditions of the theorem, it follows that

$$\|T\tilde{a}\|_{H^1(\mathbb{R}^n)} \leq C,$$

where C is independent of \tilde{a}. Since T commutes with translations, we have

$$\|\tau_{-x_0} Ta\|_{H^1(\mathbb{R}^n)} \leq \|\tau_{-x_0} \tilde{a}\|_{H^1(\mathbb{R}^n)} = \|T\tau_{-x_0} a\|_{H^1(\mathbb{R}^n)} = \|T\tilde{a}\|_{H^1(\mathbb{R}^n)} \leq C.$$

Thus, $\tau_{-x_0} Ta \in H^1(\mathbb{R}^n)$ and

$$\tau_{-x_0} Ta(x) = \sum_j \lambda_j a_j(x),$$

where each a_j is a $(1, q)$ atom, and $\sum_j |\lambda_j| \sim \|\tau_{-x_0} Ta\|_{H^1(\mathbb{R}^n)}$. Since $H^1(\mathbb{R}^n)$ is translation invariant, we then have $Ta \in H^1(\mathbb{R}^n)$ and

$$\|Ta\|_{H^1(\mathbb{R}^n)} \leq \sum_j |\lambda_j| \leq C.$$

This finishes the proof of Theorem 2.

Note that if $q \in (1, \infty)$, then $\alpha = n(1 - 1/q) \in (0, n)$. As a simple corollary of Theorem 1 and Theorem 2, we have

Corollary 2. Let $0 < \varepsilon < n$. If m satisfies

$$\sup_{\delta} \|\widehat{m_\delta}\|_{K_q^{1-\varepsilon}(\mathbb{R}^n)} < \infty,$$

then m is a bounded multiplier of $H^1(\mathbb{R}^n)$.

Finally, we point out that it is still an open problem whether (6) is a necessary condition for an $L^\infty(\mathbb{R}^n)$ function m to be a bounded multiplier of $HK_q(\mathbb{R}^n)$ in any sense (see [BS]). And we will discuss the similar problems of multipliers on general Herz type Hardy spaces $HK_q^{\alpha, p}(\mathbb{R}^n)$ in a future paper.

Acknowledgment

We thank the referee very much for his many helpful comments. We also thank Professor J. Marshall Ash very much for his kindness and enthusiasm.
REFERENCES

DEPARTMENT OF MATHEMATICS, BEIJING NORMAL UNIVERSITY, BEIJING 100875, PEOPLE’S REPUBLIC OF CHINA

E-mail address: lusz@bnu.edu.cn

E-mail address: dcyang@bnu.edu.cn