Convex composite functions in Banach spaces

and the primal lower-nice property

Authors:
C. Combari, A. Elhilali Alaoui, A. Levy, R. Poliquin and L. Thibault

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3701-3708

MSC (1991):
Primary 58C20; Secondary 49J52

MathSciNet review:
1451793

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Primal lower-nice functions defined on Hilbert spaces provide examples of functions that are ``integrable'' (i.e. of functions that are determined up to an additive constant by their subgradients). The class of primal lower-nice functions contains all convex and lower- functions. In finite dimensions the class of primal lower-nice functions also contains the composition of a convex function with a mapping under a constraint qualification. In Banach spaces certain convex composite functions were known to be primal lower-nice (e.g. a convex function had to be continuous relative to its domain). In this paper we weaken the assumptions and provide new examples of convex composite functions defined on a Banach space with the primal lower-nice property. One consequence of our results is the identification of new examples of integrable functions on Hilbert spaces.

**1.**Jean-Pierre Aubin and Ivar Ekeland,*Applied nonlinear analysis*, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR**749753****2.**Siegfried Schaible and William T. Ziemba (eds.),*Generalized concavity in optimization and economics*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**652702****3.**J. M. Borwein,*Stability and regular points of inequality systems*, J. Optim. Theory Appl.**48**(1986), no. 1, 9–52. MR**825383**, 10.1007/BF00938588**4.**Frank H. Clarke,*Optimization and nonsmooth analysis*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR**709590****5.**J. Zowe and S. Kurcyusz,*Regularity and stability for the mathematical programming problem in Banach spaces*, Appl. Math. Optim.**5**(1979), no. 1, 49–62. MR**526427**, 10.1007/BF01442543**6.****A.B. Levy**, Second-order variational analysis with applications to sensitivity in optimization, PhD. Thesis, University of Washington, 1994.**7.**A. B. Levy, R. Poliquin, and L. Thibault,*Partial extensions of Attouch’s theorem with applications to proto-derivatives of subgradient mappings*, Trans. Amer. Math. Soc.**347**(1995), no. 4, 1269–1294. MR**1290725**, 10.1090/S0002-9947-1995-1290725-3**8.**René A. Poliquin,*Integration of subdifferentials of nonconvex functions*, Nonlinear Anal.**17**(1991), no. 4, 385–398. MR**1123210**, 10.1016/0362-546X(91)90078-F**9.**René A. Poliquin,*An extension of Attouch’s theorem and its application to second-order epi-differentiation of convexly composite functions*, Trans. Amer. Math. Soc.**332**(1992), no. 2, 861–874. MR**1145732**, 10.1090/S0002-9947-1992-1145732-5**10.**Lionel Thibault and Dariusz Zagrodny,*Integration of subdifferentials of lower semicontinuous functions on Banach spaces*, J. Math. Anal. Appl.**189**(1995), no. 1, 33–58. MR**1312029**, 10.1006/jmaa.1995.1003**11.**Corneliu Ursescu,*Multifunctions with convex closed graph*, Czechoslovak Math. J.**25(100)**(1975), no. 3, 438–441. MR**0388032**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
58C20,
49J52

Retrieve articles in all journals with MSC (1991): 58C20, 49J52

Additional Information

**C. Combari**

Affiliation:
Université de Montpellier II, Laboratoire Analyse Convexe, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France

**A. Elhilali Alaoui**

Affiliation:
Université de Montpellier II, Laboratoire Analyse Convexe, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France

Address at time of publication:
Falculté des Sciences et Techniques de Marrakech, Université Cadi Ayad, B.P. 618, Marrakech, Maroc

**A. Levy**

Affiliation:
Department of Mathematics, Bowdoin College, Brunswick, Maine 04011

Email:
alevy@bowdoin.edu

**R. Poliquin**

Affiliation:
Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Email:
rene.poliquin@ualberta.ca

**L. Thibault**

Affiliation:
Université de Montpellier II, Laboratoire Analyse Convexe, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France

DOI:
http://dx.doi.org/10.1090/S0002-9939-98-04324-X

Keywords:
Primal lower-nice functions,
subdifferential,
convex composite functions,
integrable functions

Received by editor(s):
February 16, 1996

Received by editor(s) in revised form:
November 27, 1996

Additional Notes:
The research of R. Poliquin was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant OGP41983.

Communicated by:
Dale Alspach

Article copyright:
© Copyright 1998
American Mathematical Society