On self-intersections of immersed surfaces

Author:
Gui-Song Li

Journal:
Proc. Amer. Math. Soc. **126** (1998), 3721-3726

MSC (1991):
Primary 57M42

MathSciNet review:
1459134

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A daisy graph is a union of immersed circles in 3-space which intersect only at the triple points. It is shown that a daisy graph can always be realized as the self-intersection set of an immersed closed surface in 3-space and the surface may be chosen to be orientable if and only if the daisy graph has an even number of edges on each immersed circle.

**[1]**Thomas F. Banchoff,*Triple points and surgery of immersed surfaces*, Proc. Amer. Math. Soc.**46**(1974), 407–413. MR**0377897**, 10.1090/S0002-9939-1974-0377897-1**[2]**J. Scott Carter,*Extending immersions of curves to properly immersed surfaces*, Topology Appl.**40**(1991), no. 3, 287–306. MR**1124843**, 10.1016/0166-8641(91)90111-X**[3]**J. Scott Carter,*How surfaces intersect in space*, 2nd ed., Series on Knots and Everything, vol. 2, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. An introduction to topology. MR**1341588****[4]**Ki Hyoung Ko and J. Scott Carter,*Triple points of immersed surfaces in three-dimensional manifolds*, Proceedings of the 1987 Georgia Topology Conference (Athens, GA, 1987), 1989, pp. 149–159. MR**1007987**, 10.1016/0166-8641(89)90052-7**[5]**J. S. Carter and M. Saito,*Surfaces in 3-space that do not lift to embeddings*, to appear in Proceedings of Warsaw workshop on knot theory, 1995.**[6]**Peter R. Cromwell and W. L. Marar,*Semiregular surfaces with a single triple-point*, Geom. Dedicata**52**(1994), no. 2, 143–153. MR**1298766**, 10.1007/BF01263602**[7]**B. Csikós and A. Szűcs,*On the number of triple points of an immersed surface with boundary*, Manuscripta Math.**87**(1995), no. 3, 285–293. MR**1340348**, 10.1007/BF02570475**[8]**M. Dehn,*Die Gruppe der Abbildungsklassen*, Acta Math.**69**(1938), 135-206.**[9]**Cole A. Giller,*Towards a classical knot theory for surfaces in 𝑅⁴*, Illinois J. Math.**26**(1982), no. 4, 591–631. MR**674227****[10]**S. Izumiya and W. L. Marar,*The Euler characteristic of a generic wavefront in a 3-manifold*, Proc. Amer. Math. Soc.**118**(1993), no. 4, 1347–1350. MR**1165055**, 10.1090/S0002-9939-1993-1165055-4**[11]**Ulrich Koschorke,*Multiple points of immersions, and the Kahn-Priddy theorem*, Math. Z.**169**(1979), no. 3, 223–236. MR**554526**, 10.1007/BF01214837**[12]**Hassler Whitney,*On the topology of differentiable manifolds*, Lectures in Topology, University of Michigan Press, Ann Arbor, Mich., 1941, pp. 101–141. MR**0005300**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
57M42

Retrieve articles in all journals with MSC (1991): 57M42

Additional Information

**Gui-Song Li**

Affiliation:
Institute of Systems Science, Academia Sinica, Beijing 100080, People’s Republic of China

Email:
lgs@iss06.iss.ac.cn

DOI:
http://dx.doi.org/10.1090/S0002-9939-98-04456-6

Keywords:
Immersed surface,
self-intersection set,
daisy graph

Received by editor(s):
October 15, 1996

Received by editor(s) in revised form:
April 7, 1997

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 1998
American Mathematical Society