Centralizers in residually finite torsion groups
Author:
Aner Shalev
Journal:
Proc. Amer. Math. Soc. 126 (1998), 34953499
MSC (1991):
Primary 20F50, 20E36; Secondary 20F40, 17B01
MathSciNet review:
1459149
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a residually finite torsion group. We show that, if has a finite 2subgroup whose centralizer is finite, then is locally finite. We also show that, if has no torsion, and is a finite 2group acting on in such a way that the centralizer is soluble, or of finite exponent, then is locally finite.
 [BZ]
Y.A. Bahturin and M.V. Zaicev, Identities of graded algebras, to appear in J. Algebra.
 [FT]
Walter
Feit and John
G. Thompson, Solvability of groups of odd order, Pacific J.
Math. 13 (1963), 775–1029. MR 0166261
(29 #3538)
 [G]
E.
S. Golod, On nilalgebras and finitely approximable
𝑝groups, Izv. Akad. Nauk SSSR Ser. Mat. 28
(1964), 273–276 (Russian). MR 0161878
(28 #5082)
 [Gr]
R.
I. Grigorčuk, On Burnside’s problem on periodic
groups, Funktsional. Anal. i Prilozhen. 14 (1980),
no. 1, 53–54 (Russian). MR 565099
(81m:20045)
 [GS]
Narain
Gupta and Saïd
Sidki, On the Burnside problem for periodic groups, Math. Z.
182 (1983), no. 3, 385–388. MR 696534
(84g:20075), http://dx.doi.org/10.1007/BF01179757
 [H1]
B.
Hartley, Centralizers in locally finite groups, Group theory
(Bressanone, 1986) Lecture Notes in Math., vol. 1281, Springer,
Berlin, 1987, pp. 36–51. MR 921689
(89c:20058), http://dx.doi.org/10.1007/BFb0078689
 [H2]
B. Hartley, A theorem of BrauerFowler type and centralizers in locally finite groups, Pacific J. Math. 152 (1992), 101117.
 [H3]
B.
Hartley, Simple locally finite groups, Finite and locally
finite groups (Istanbul, 1994) NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., vol. 471, Kluwer Acad. Publ., Dordrecht, 1995,
pp. 1–44. MR 1362804
(96k:20076), http://dx.doi.org/10.1007/9789401103299_1
 [HB]
Bertram
Huppert and Norman
Blackburn, Finite groups. II, Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 242, SpringerVerlag, BerlinNew York, 1982. AMD, 44. MR 650245
(84i:20001a)
 [K]
Hans
Kurzweil, 𝑝Automorphismen von auflösbaren
𝑝′Gruppen, Math. Z. 120 (1971),
326–354 (German). MR 0284503
(44 #1728)
 [L]
Michel
Lazard, Groupes analytiques 𝑝adiques, Inst. Hautes
Études Sci. Publ. Math. 26 (1965), 389–603
(French). MR
0209286 (35 #188)
 [RSh]
N. Rocco and P. Shumyatsky, On periodic groups having almost regular 2elements, to appear in Proc. Edinburgh Math. Soc.
 [S]
V.P. Shunkov, On periodic groups with almost regular involution, Algebra and Logic 11 (1972), 260272.
 [Sh1]
P. Shumyatsky, On groups having a foursubgroup with finite centralizers, to appear.
 [Sh2]
P. Shumyatsky, Nilpotency of some Lie algebras associated with groups, to appear.
 [T]
John
G. Thompson, Automorphisms of solvable groups, J. Algebra
1 (1964), 259–267. MR 0173710
(30 #3920)
 [Tu]
Alexandre
Turull, Fitting height of groups and of fixed points, J.
Algebra 86 (1984), no. 2, 555–566. MR 732266
(85i:20021), http://dx.doi.org/10.1016/00218693(84)900486
 [Z1]
E.
I. Zel′manov, On periodic compact groups, Israel J.
Math. 77 (1992), no. 12, 83–95. MR 1194787
(94e:20055), http://dx.doi.org/10.1007/BF02808012
 [Z2]
E.
I. Zel′manov, Lie ring methods in the theory of nilpotent
groups, Groups ’93 Galway/St.\ Andrews, Vol.\ 2, London Math.
Soc. Lecture Note Ser., vol. 212, Cambridge Univ. Press, Cambridge,
1995, pp. 567–585. MR 1337299
(96i:20048), http://dx.doi.org/10.1017/CBO9780511629297.023
 [BZ]
 Y.A. Bahturin and M.V. Zaicev, Identities of graded algebras, to appear in J. Algebra.
 [FT]
 W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 7751029. MR 29:3538
 [G]
 E.S. Golod, On nilalgebras and residually finite groups, Izv. Akad. Nauk SSSR, Ser. Mat. 28 (1964), 273276. MR 28:5082
 [Gr]
 R.I. Grigorchuk, On the Burnside problem for periodic groups, Funct. Anal. Appl. 14 (1980), 5354. MR 81m:20045
 [GS]
 N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Math. Z. 182 (1983), 385386. MR 84g:20075
 [H1]
 B. Hartley, Centralizers in locally finite groups, Proc. 1st Bressanone Group Theory Conference 1986, Lecture Notes in Math. 1281, Springer, 1987, pp. 3651. MR 89c:20058
 [H2]
 B. Hartley, A theorem of BrauerFowler type and centralizers in locally finite groups, Pacific J. Math. 152 (1992), 101117.
 [H3]
 B. Hartley, Simple locally finite groups, Proc. NATO ASI on Finite and Locally Finite Groups  Istanbul 1994, Kluwer, 1995, pp. 144. MR 96k:20076
 [HB]
 B. Huppert and N. Blackburn, Finite Groups II, Springer, Berlin, 1982. MR 84i:20001a
 [K]
 H. Kurzweil, Automophismen von auflösbaren Gruppen, Math. Z. 120 (1971), 326354. MR 44:1728
 [L]
 M. Lazard, Groupes analytiques adiques, Publ. Math. IHES 26 (1965), 389603. MR 35:188
 [RSh]
 N. Rocco and P. Shumyatsky, On periodic groups having almost regular 2elements, to appear in Proc. Edinburgh Math. Soc.
 [S]
 V.P. Shunkov, On periodic groups with almost regular involution, Algebra and Logic 11 (1972), 260272.
 [Sh1]
 P. Shumyatsky, On groups having a foursubgroup with finite centralizers, to appear.
 [Sh2]
 P. Shumyatsky, Nilpotency of some Lie algebras associated with groups, to appear.
 [T]
 J.G. Thompson, Automorphisms of solvable groups, J. Algebra 1 (1964), 259267. MR 30:3920
 [Tu]
 A. Turull, Fitting heights of groups and of fixed points, J. Algebra 86 (1984), 555566. MR 85i:20021
 [Z1]
 E.I. Zelmanov, On periodic compact groups, Israel J. Math. 77 (1992), 8395. MR 94e:20055
 [Z2]
 E.I. Zelmanov, Lie ring methods in the theory of nilpotent groups, Groups '93, GalwaySt Andrews, London Math. Soc. Lecture Note Series 212, 1995, pp. 567585. MR 96i:20048
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (1991):
20F50,
20E36,
20F40,
17B01
Retrieve articles in all journals
with MSC (1991):
20F50,
20E36,
20F40,
17B01
Additional Information
Aner Shalev
Affiliation:
Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
DOI:
http://dx.doi.org/10.1090/S0002993998044712
PII:
S 00029939(98)044712
Received by editor(s):
March 25, 1997
Received by editor(s) in revised form:
April 23, 1997
Additional Notes:
Supported by the BiNational Science Foundation United States – Israel, Grant No. 9200034
Dedicated:
In memory of Brian Hartley
Communicated by:
Lance W. Small
Article copyright:
© Copyright 1998
American Mathematical Society
